Advertisement

Relativistic Vlasov code development for high energy density plasmas

  • Sizhong WuEmail author
  • Hua Zhang
  • Cangtao Zhou
  • Shaoping Zhu
  • Xiantu He
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation

Abstract

A newly developed relativistic Vlasov code is introduced. The governing Vlasov-Maxwell equation system is solved numerically in one-dimensional space and three-dimensional momentum space. Spherical coordinate system is adopted to characterize the momentum variables for its potential advantage on reducing computational cost. The resulting Vlasov equation is split into two advection equations with respect to position and momentum, respectively. They are solved with a conservative finite volume scheme, together with techniques suppressing numerical oscillations at sharp interfaces. Relativistic longitudinal plasma oscillations are investigated for different plasma temperatures and wave numbers. Results from code simulations are in good agreement with the existing theories.

Keywords

Momentum Space Sharp Interface Vlasov Equation Volume Scheme Advection Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938) (in Russian)zbMATHGoogle Scholar
  2. 2.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (McGraw-Hill, New York, 1973)Google Scholar
  3. 3.
    L.D. Landau, J. Phys. (U.S.S.R.) 10, 25 (1946)zbMATHGoogle Scholar
  4. 4.
    J.H. Malmberg, C.B. Wharton, Phys. Rev. Lett. 13, 184 (1964)ADSCrossRefGoogle Scholar
  5. 5.
    J. Büchner, in Advanced Methods for Space Simulations, edited by H. Usui, Y. Omura, (TERRAPUB, Tokyo, 2007), pp. 23–46Google Scholar
  6. 6.
    C.Z. Cheng, G. Knorr, J. Comput. Phys. 22, 330, (1976)ADSCrossRefGoogle Scholar
  7. 7.
    A. Ghizzo, P. Bertrand, M. Shoucri, T.W. Johnston, E. Fijalkow, M.R. Feix, J. Comput. Phys. 90, 431 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    G. Manfredi, M. Shoucri, M.R. Feix, P. Bertrand, E. Fijalkow, A. Ghizzo, J. Comput. Phys. 121, 198 (1995)CrossRefMathSciNetGoogle Scholar
  9. 9.
    E. Fijalkow, Comput. Phys. Commun. 116, 319 (1999)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    F. Califano, F. Pegoraro, S. Bulanov, Phys. Rev. Lett. 84, 3602 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    F. Filbet, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 172, 166 (2001)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    D.J. Strozzi, M.M. Shoucri, A. Bers, Comput. Phys. Commun. 164, 156 (2004)ADSCrossRefzbMATHGoogle Scholar
  13. 13.
    J. Büchner, N. Elkina, Space Sci. Rev. 121, 237 (2006)CrossRefGoogle Scholar
  14. 14.
    N. Crouseilles, A. Ghizzo, S. Salmon, INRIA Research Report number 6109 (2007)Google Scholar
  15. 15.
    J.W. Banks, J.A.F. Hittinger, IEEE Trans. Plasma Sci. 38, 2198 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    G.A. Mourou, T. Tajima, S.V. Bulanov, Rev. Mod. Phys. 78, 309 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Esarey, C.B. Schroeder, W.P. Leemans, Rev. Mod. Phys. 81, 1229 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A. Macchi, M. Borghesi, M. Passoni, Rev. Mod. Phys. 85, 751 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    S. Corde, K. Ta Phuoc, G. Lambert, R. Fitour, V. Malka, A. Rousse, A. Beck, E. Lefebvre, Rev. Mod. Phys. 85, 1 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    H. Chen et al., Phys. Rev. Lett. 105, 015003 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    National Research Council, Frontiers in High Energy Density Physics: The X-Games of Contemporary Science (National Academies, Washington, D.C., 2003)Google Scholar
  22. 22.
    R.P. Drake, High-Energy-Density Physics (Springer, Berlin, 2006)Google Scholar
  23. 23.
    J. Shebalin, NASA/TP-2001-210195 (2001)Google Scholar
  24. 24.
    F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, O. Coulaud, J. Comput. Phys. 185, 512 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    N. Besse, G. Latu, A. Ghizzo, E. Sonnendrücker, P. Bertrand, J. Comput. Phys. 227, 7889 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    N.J. Sircombe, T.D. Arber, J. Comput. Phys. 228, 4773 (2009)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  27. 27.
    A. Suzuki, T. Shigeyama, J. Comput. Phys. 229, 1643 (2010)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    M. Shoucri, X. Lavocat-Dubuis, J.-P. Matte, F. Vidal, Laser Particle Beams 29, 315 (2011)CrossRefGoogle Scholar
  29. 29.
    M. Tzoufras, A. Tableman, F.S. Tsung, W.B. Mori, A.R. Bell, Phys. Plasmas 20, 056303 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    R. Schlickeiser, Phys. Plasmas 1, 2119 (1994)ADSCrossRefGoogle Scholar
  31. 31.
    J. Bergman, B. Eliasson, Phys. Plasmas 8, 1482 (2001)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sizhong Wu
    • 1
    • 2
    Email author
  • Hua Zhang
    • 1
    • 2
  • Cangtao Zhou
    • 1
    • 2
  • Shaoping Zhu
    • 1
  • Xiantu He
    • 1
    • 2
  1. 1.Institute of Applied Physics and Computational MathematicsBeijingP.R. China
  2. 2.Key Laboratory of HEDP of the Ministry of Education, CAPTPeking UniversityBeijingP.R. China

Personalised recommendations