Fluid simulations of ion scale plasmas with weakly distorted magnetic fields

FLR-Landau fluid simulations
  • Thierry PassotEmail author
  • Pierre Henri
  • Dimitri Laveder
  • Pierre-Louis Sulem
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation


Three-dimensional simulations of turbulence in collisionless plasmas are presented, using a fluid model that extends the anisotropic MHD to scales of the order of the ion gyroradius and below in directions perpendicular to the ambient magnetic field. This model, which includes linear Landau damping and finite Larmor radius corrections to all the retained moments, provides an efficient tool to describe Alfvénic turbulence in the absence of cyclotron resonance. When sufficiently small scales are retained, no artificial damping nor collisional effects is required. Simulations with large-scale Alfvenic driving show the development of perpendicular power-law spectra (taken at zero parallel wavenumber) with an exponent close to –2.8 for the perpendicular magnetic field at scales smaller than the ion inertial length. The electric field spectrum displays a break at intermediate scales, consistent with Solar Wind observations. These spectra appear in a quasi-stationary state after early-formed sheet-like density and current structures have evolved into filaments. In the presence of temperature anisotropy, the nonlinear development of the mirror instability leads to pressure-balanced magnetic structures surrounded by significant ion velocity fields perpendicular to the ambient field. At later time, the system becomes turbulent, with the disruption of the magnetic structures into parallel filaments.


Temperature Anisotropy Sulem Spectral Exponent Mirror Structure Solar Wind Observation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.B. Snyder, G.W. Hammett, W. Dorland, Phys. Plasmas 4, 3974 (1997)ADSCrossRefMathSciNetGoogle Scholar
  2. 2.
    A. Macmahon, Phys. Fluids 8, 1840 (1965)ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    P. Goswami, T. Passot, P.L. Sulem, Phys. Plasmas 12, 102109 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J.J. Ramos, Phys. Plasmas 12, 052102 (2005)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    T. Passot, P.L. Sulem, Phys. Plasmas 14, 082502 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    T. Passot, P.L. Sulem, P. Hunana, Phys. Plasmas 19, 082113 (2012)ADSCrossRefGoogle Scholar
  7. 7.
    P. Hunana, M.L. Goldstein, T. Passot, P.L. Sulem, D. Laveder, G.P. Zank, Astrophys. J. 766, 93 (2013)ADSCrossRefGoogle Scholar
  8. 8.
    P. Hunana, M.L. Goldstein, T. Passot, P.L. Sulem, D. Laveder, G.P. Zank, Proc. Solar Wind 13: Proceedings of the Thirteenth International Solar Wind Conference, Big Island, Hawaii, 2012, edited by G. Zank et al., in AIP Conf. Proc., Vol. 1539 (2013), pp. 179–182Google Scholar
  9. 9.
    P.L. Sulem, T. Passot, submitted to J. Plasma Phys.Google Scholar
  10. 10.
    S.P. Gary, J. Plasma Phys. 35, 431 (1986)ADSCrossRefGoogle Scholar
  11. 11.
    G. Belmont, L. Rezeau, Ann. Geophys. 5, 59 (1987)Google Scholar
  12. 12.
    F. Sahraoui, G. Belmont, M.L. Goldstein, Astrophys. J. 748, 100 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    D. Laveder, L. Marradi, T. Passot, P.L. Sulem, Geophys. Res. Lett. 38, L17108 (2011)ADSGoogle Scholar
  14. 14.
    P. Sharma, G.W. Hammett, J. Comput. Phys. 227, 123 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    P. Sharma, G.W. Hammett, E. Quataert, J.A. Stone, Astrophys. J. 637, 952 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    J.M. TenBarge, G.C. Howes, W. Dorland, G.W. Hammett, Comput. Phys. Commun. 185, 578 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    G.G. Howes, J.M. TenBarge, W. Dorland, E. Quataert, A.A. Schekochihin, R. Numata, T. Tatsuno, Phys. Rev. Lett. 107, 035004 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    M. Lesieur, O. Metais, Ann. Rev. Fluid Mech. 28, 45 (1996)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    A.A. Schekochihin, S.C. Cowley, W. Dorland, G.W. Hammett, G.G. Howes, E. Quataert, T. Tatsuno, Astrophys. J. Suppl. Ser. 182, 310 (2009)ADSCrossRefGoogle Scholar
  20. 20.
    D. Biskamp, E. Schwartz, A. Zeiler, A. Celani, J.F. Drake, Phys. Plasmas 6, 751 (1999)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    S. Galtier, Phys. Rev. E 77, 015302 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    F. Sahraoui, M.L. Goldstein, P. Robert, Y.V. Khotyaintsev, Phys. Rev. Lett. 102, 231102 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010)ADSCrossRefGoogle Scholar
  24. 24.
    F. Sahraoui, M.L. Goldstein, G. Belmont, P. Canu, L. Rezeau, Phys. Rev. Lett. 105, 131101 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    O. Alexandrova, C. Lacombe, A. Mangeney, R. Grappin, M. Maksimovic, Astrophys. J. 760, 121 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    F. Sahraoui, S.Y. Huang, G. Belmont, M.L. Goldstein, A. Rétino, P. Robert, J. De Patoul, Astrophys. J. 777, 15 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    H. Miura, K. Araki, J. Phys.: Conf. Ser. 318, 072032 (2011)ADSGoogle Scholar
  28. 28.
    R. Meyrand, S. Galtier, Phys. Rev. Lett. 111, 264501 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    S. Boldyrev, K. Horaites, Q. Xia, J.C. Perez, Astrophys. J. 777, 41 (2013)ADSCrossRefGoogle Scholar
  30. 30.
    K.W. Smith, P.W. Terry, Astrophys. J. 730, 133 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    F. Sahraoui, G. Belmont, M.L. Goldstein, Astrophys. J. 748, 100 (2012)ADSCrossRefGoogle Scholar
  32. 32.
    F. Califano, P. Hellinger, E. Kuznetsov, T. Passot, P.L. Sulem, P.M. Trávníček, J. Geophys. Res. 113, A08219 (2008)ADSGoogle Scholar
  33. 33.
    F. Sahraoui, G. Belmont, L. Rezeau, N. Cornilleau-Wehrlin, J.L. Pinçon, A. Balogh, Phys. Rev. Lett. 96, 075002 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thierry Passot
    • 1
    Email author
  • Pierre Henri
    • 1
    • 2
  • Dimitri Laveder
    • 1
  • Pierre-Louis Sulem
    • 1
  1. 1.UNS, CNRSObservatoire de la Côte d’AzurNiceFrance
  2. 2.LPC2E/CNRS 3A Av. de la Recherche ScientifiqueOrléans Cedex 2France

Personalised recommendations