Advertisement

Analysis of intermittent heating in a multi-component turbulent plasma

  • Denise PerroneEmail author
  • Francesco Valentini
  • Sergio Servidio
  • Serena Dalena
  • Pierluigi Veltri
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation

Abstract

Kinetic effects and turbulence are two phenomena that characterize the solar wind, and, therefore, kinetic models represent the best tool of investigation for this collisionless plasma. In this work, hybrid Vlasov-Maxwell simulations are performed to investigate the intermittent heating of the solar wind, in a two-dimensional multi-ion plasma composed by protons, alpha particles and fluid electrons. The numerical results show that particle distribution functions depart from the typical Maxwellian configuration under the effect of the turbulence. Both ion species develop temperature anisotropy, with respect to the local magnetic field, that increases during the development of the turbulent cascade. During the nonlinear evolution of the system, coherent structures (vortices and current sheets) appear in physical space, related to the intermittent nature of the magnetic field. Conditioned ion temperature distributions suggest that enhancements of ion temperatures are associated with stronger coherent structures, in agreement with recent solar wind data analyses.

Keywords

Solar Wind Current Sheet Coherent Structure Alpha Particle Vlasov Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    E. Marsch, K.H. Mühlhäuser, R. Schwenn, H. Rosenbauer, W. Pilipp, F.M. Neubauer, J. Geophys. Res. 87, 52 (1982)ADSCrossRefGoogle Scholar
  2. 2.
    E. Marsch, K.H. Mühlhäuser, H. Rosenbauer, R. Schwenn, F.M. Neubauer, J. Geophys. Res. 87, 35 (1982)ADSCrossRefGoogle Scholar
  3. 3.
    C.-Y. Tu, L.-H. Wang, E. Marsch, J. Geophys. Res. 107, 1291 (2002)CrossRefGoogle Scholar
  4. 4.
    M. Heuer, E. Marsch, J. Geophys. Res. 112, A03102 (2007)ADSGoogle Scholar
  5. 5.
    S.D. Bale, J.C. Kasper, G.G. Howes, E. Quataert, C. Salem, D. Sundkvist, Phys. Rev. Lett. 103, 211101 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    S. Bourouaine, E. Marsch, F.M. Neubauer, Geophys. Res. Lett. 37, L14104 (2010)ADSGoogle Scholar
  7. 7.
    R. Bruno, V. Carbone, Living Rev. Sol. Phys. 2, 4 (2005)ADSGoogle Scholar
  8. 8.
    E. Marsch, Living Rev. Sol. Phys. 3, 1 (2006)ADSGoogle Scholar
  9. 9.
    J.C. Kasper, A.J. Lazarus, S.P. Gary, Phys. Rev. Lett. 101, 261103 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    B.D.G. Chandran, B. Li, B.N. Rogers, E. Quataert, K. Germaschewski, Astrophys. J. 720, 503 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    S. Bourouaine, E. Marsch, F.M. Neubauer, Astrophys. J. Lett. 728, L3 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bourouaine, E. Marsch, F.M. Neubauer, A&A 536, A39 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    B.A. Maruca, J.C. Kasper, S.P. Gary, Astrophys. J. 748, 137 (2012)ADSCrossRefGoogle Scholar
  14. 14.
    T.N. Parashar, M.A. Shay, P.A. Cassak, W.H. Matthaeus, Phys. Plasmas 16, 032310 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    S. Servidio, F. Valentini, F. Califano, P. Veltri, Phys. Rev. Lett. 108, 045001 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    M. Wan, W.H. Matthaeus, H. Karimabadi, V. Roytershteyn, M.A. Shay, P. Wu, W. Daughton, B. Loring, S.C. Chapman, Phys. Rev. Lett. 109, 195001 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    H. Karimabadi, V. Roytershteyn, M. Wan, W.H. Matthaeus, W. Daughton, P. Wu, M.A. Shay, B. Loring, J. Borovsky, E. Leonardis, S.C. Chapman, T.K.M. Nakamura, Phys. Plasmas 20, 012303 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    J.M. TenBarge, G.G. Howes, Astrophys. J. Lett. 771, L27 (2013)ADSCrossRefGoogle Scholar
  19. 19.
    L. Matteini, S. Landi, M. Velli, W.H. Matthaeus, Astrophys. J. 763, 142 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    C.T. Haynes, D. Burgess, E. Camporeale, Astrophys. J. 783, 38 (2014)ADSCrossRefGoogle Scholar
  21. 21.
    L. Sorriso-Valvo, V. Carbone, P. Veltri, G. Consolini, R. Bruno, Geophys. Res. Lett. 23, 1801 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    B.J. Vasquez, V.I. Abramenko, D.K. Haggerty, C.W. Smith, J. Geophys. Res. 112, 11102 (2007)CrossRefGoogle Scholar
  23. 23.
    A. Retinò, D. Sundkvist, A. Vaivads, F. Mozer, M. André, C.J. Owen, Nat. Phys. 3, 235 (2007)CrossRefGoogle Scholar
  24. 24.
    O. Alexandrova, J. Saur, C. Lacombe, A. Mangeney, J. Mitchell, S.J. Schwartz, P. Robert, Phys. Rev. Lett. 103, 165003 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    K.T. Osman, W.H. Matthaeus, A. Greco, S. Servidio, Astrophys. J. Lett. 727, L11 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    K.T. Osman, W.H. Matthaeus, M. Wan, A.F. Rappazzo, Phys. Rev. Lett. 108, 261102 (2012)ADSCrossRefGoogle Scholar
  27. 27.
    S. Perri, M.L. Goldstein, J.C. Dorelli, F. Sahraoui, Phys. Rev. Lett. 109, 191101 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    P. Wu, S. Perri, K.T. Osman, M. Wan, W.H. Matthaeus, M.A. Shay, M.L. Goldstein, H. Karimabadi, S. Chapman, Astrophys. J. Lett. 763, L30 (2013)ADSCrossRefGoogle Scholar
  29. 29.
    A. Mangeney, F. Califano, C. Cavazzoni, P. Travnicek, J. Comput. Phys. 179, 495 (2002)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  30. 30.
    F. Valentini, P. Veltri, A. Mangeney, J. Comput. Phys. 210, 730 (2005)ADSCrossRefzbMATHGoogle Scholar
  31. 31.
    F. Valentini, P. Travnicek, F. Califano, P. Hellinger, A. Mangeney, J. Comput. Phys. 225, 753 (2007)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    F. Valentini, P. Veltri, F. Califano, A. Mangeney, Phys. Rev. Lett. 101, 025006 (2008)ADSCrossRefGoogle Scholar
  33. 33.
    F. Valentini, P. Veltri, Phys. Rev. Lett. 102, 225001 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    F. Valentini, F. Califano, P. Veltri, Phys. Rev. Lett. 104, 205002 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    F. Valentini, D. Perrone, P. Veltri, Astrophys. J. 739, 54 (2011)ADSCrossRefGoogle Scholar
  36. 36.
    D. Perrone, F. Valentini, P. Veltri, Astrophys. J. 741, 43 (2011)ADSCrossRefGoogle Scholar
  37. 37.
    D. Perrone, F. Valentini, S. Servidio, S. Dalena, P. Veltri, Astrophys. J. 762, 99 (2013)ADSCrossRefGoogle Scholar
  38. 38.
    D. Perrone, R.O. Dendy, I. Furno, R. Sanchez, G. Zimbardo, A. Bovet, A. Fasoli, K. Gustafson, S. Perri, P. Ricci, F. Valentini, Space Sci. Rev. 178, 233 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    S.D. Bale, P.J. Kellogg, F.S. Mozer, T.S. Horbury, H. Reme, Phys. Rev. Lett. 94, 215002 (2005)ADSCrossRefGoogle Scholar
  40. 40.
    A. Greco, W. Matthaeus, S. Servidio, P. Chuychai, P. Dmitruk, Astrophys. J. Lett. 691, L111 (2009)ADSCrossRefGoogle Scholar
  41. 41.
    S. Servidio, K.T. Osman, F. Valentini, D. Perrone, F. Califano, S. Chapman, W.H. Matthaeus, P. Veltri, Astrophys. J. Lett. 781, L27 (2014)ADSCrossRefGoogle Scholar
  42. 42.
    A. Greco, F. Valentini, S. Servidio, W.H. Matthaeus, Phys. Rev. E 86, 066405 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Denise Perrone
    • 1
    • 2
    Email author
  • Francesco Valentini
    • 2
  • Sergio Servidio
    • 2
  • Serena Dalena
    • 2
    • 3
  • Pierluigi Veltri
    • 2
  1. 1.LESIAObservatoire de ParisMeudonFrance
  2. 2.Dipartimento di Fisica and CNISMUniversità della CalabriaRende (CS)Italy
  3. 3.Bartol Research Institute, Department of Physics and AstronomyUniversity of DelawareNewarkUSA

Personalised recommendations