Hamiltonian structure of a drift-kinetic model and Hamiltonian closures for its two-moment fluid reductions

  • Emanuele TassiEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation


We address the problem of the existence of the Hamiltonian structure for an electrostatic drift-kinetic model and for the related fluid models describing the evolution of the first two moments of the distribution function with respect to the parallel velocity. The drift-kinetic model, which accounts for background density and temperature gradients as well as polarization effects, is shown to possess a noncanonical Hamiltonian structure. The corresponding Poisson bracket is expressed in terms of the fluid moments and it is found that the set of functionals of the zero order moment forms a sub-algebra, thus automatically leading to a class of one-moment Hamiltonian fluid models. In particular, in the limit of weak spatial variations of the background quantities, the Charney-Hasegawa-Mima equation, with its Hamiltonian structure, is recovered. For the set of functionals of the first two moments, which, unlike the case of the Vlasov equation, turns out not to form a sub-algebra, we look for closures that lead to a closed Poisson bracket restricted to this set of functionals. The constraint of the Jacobi identity turns out to select the adiabatic equation of state for an ideal gas with one-degree-of-freedom molecules, as the only admissible closure in this sense. When the so called δf ordering is applied to the model, on the other hand, a Poisson bracket is obtained if the second order moment is a linear combination of the first two moments of the total distribution function. By means of this procedure, three-dimensional Hamiltonian fluid models that couple a generalized Charney-Hasegawa-Mima equation with an evolution equation for the parallel velocity are derived. Among these, a model adopted by Meiss and Horton [Phys. Fluids 26, 990 (1983)] to describe drift waves coupled to ion-acoustic waves, is obtained and its Hamiltonian structure is provided explicitly.


Poisson Bracket Order Moment Jacobi Identity Vlasov Equation Functional Derivative 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R.D. Hazeltine, Plasma Phys. 15, 77 (1973)ADSCrossRefGoogle Scholar
  2. 2.
    R.D. Hazeltine, A.A. Ware, Plasma Phys. 20, 673 (1978)ADSCrossRefGoogle Scholar
  3. 3.
    R.D. Hazeltine, J.D. Meiss, Plasma Confinement (Dover Publications, New York, 2003)Google Scholar
  4. 4.
    K. Nishikawa, M. Wakatani, Plasma Physics (Springer, Heidelberg, 2000)Google Scholar
  5. 5.
    S.I. Braginskii, Rev. Plasma Phys. 1, 205 (1965)ADSGoogle Scholar
  6. 6.
    G.W. Hammett, F.W. Perkins, Phys. Rev. Lett. 64, 3019 (1990)ADSCrossRefGoogle Scholar
  7. 7.
    P.B. Snyder, G.W. Hammett, W. Dorland, Phys. Plasmas 4, 3974 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    T. Passot, P.L. Sulem, Phys. Plasmas 11, 5173 (2004)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    P. Goswami, T. Passot, P.L. Sulem, Phys. Plasmas 12, 2109 (2005)Google Scholar
  10. 10.
    P.J. Morrison, Phys. Lett. 80A, 383 (1980)ADSCrossRefGoogle Scholar
  11. 11.
    J.E. Marsden, A. Weinstein, Physica D 4, 394 (1982)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    B.A. Kupershmidt, J.I. Manin, Funktsional. Anal. i Prilozhen 12, 25 (1978)zbMATHMathSciNetGoogle Scholar
  13. 13.
    J. Gibbons, Physica D 3, 503 (1981)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    J. Gibbons, D.D. Holm, C. Tronci, Phys. Lett. A 372, 1024 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    J. Gibbons, D.D. Holm, C. Tronci, Phys. Lett. A 372, 4184 (2008)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  16. 16.
    L. de Guillebon, C. Chandre, Phys. Lett. A 376, 3172 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    E. Tassi, J. Phys. A: Math. Theor. 47, 195501 (2014)ADSCrossRefGoogle Scholar
  18. 18.
    V. Grandgirard, M. Brunetti, P. Bertrand, N. Besse, X. Garbet, P. Ghendrih, G. Manfredi, Y. Sarazin, O. Sauter, E. Sonnendrücker, J. Vaclavik, L. Villard, J. Comput. Phys. 217, 395 (2006)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    P.J. Morrison, Phys. Plasmas 20, 012104 (2013)ADSCrossRefGoogle Scholar
  20. 20.
    P.J. Morrison, M. Vittot, L. de Guillebon, Phys. Plasmas 20, 032109 (2013)ADSCrossRefGoogle Scholar
  21. 21.
    P.J. Morrison, AIP Conf. Proc. 88, 13 (1982)ADSCrossRefGoogle Scholar
  22. 22.
    J.E. Marsden, T.R. Ratiu, Introduction to Mechanics and Symmetry (Springer-Verlag, Berlin, 2002)Google Scholar
  23. 23.
    P.J. Morrison, Rev. Mod. Phys. 70, 467 (1998)ADSzbMATHCrossRefGoogle Scholar
  24. 24.
    J.C. Charney, J. Atmos. Sci. 28, 1087 (1971)ADSCrossRefGoogle Scholar
  25. 25.
    A. Hasegawa, K. Mima, Phys. Rev. Lett. 39, 205 (1977)ADSCrossRefGoogle Scholar
  26. 26.
    A. Weinstein, Phys. Fluids 26, 388 (1983)ADSzbMATHMathSciNetCrossRefGoogle Scholar
  27. 27.
    E. Tassi, C. Chandre, P.J. Morrison, Phys. Plasmas 16, 082301 (2009)ADSCrossRefGoogle Scholar
  28. 28.
    C. Chandre, E. Tassi, P.J. Morrison, Phys. Plasmas 17, 042307 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    P. Morel, E. Gravier, N. Besse, R. Klein, A. Ghizzo, P. Bertrand, X. Garbet, P. Ghendrih, V. Grandgirard, Y. Sarazin, Phys. Plasmas 14, 112109 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    B. Scott, Phys. Plasmas 17, 102306 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    E. Tassi, P.J. Morrison, D. Grasso, F. Pegoraro, Nucl. Fus. 50, 034007 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    J.D. Meiss, W. Horton, Phys. Fluids 26, 990 (1983)ADSzbMATHCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CNRS, Centre de Physique Théorique, UMR 7332Aix-Marseille Université, Université de ToulonMarseilleFrance

Personalised recommendations