Advertisement

Kinetic ion-acoustic solitary waves in collisional plasmas

  • Oreste PezziEmail author
  • Francesco Valentini
  • Pierluigi Veltri
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation

Abstract

The excitation and the propagation of solitary waves of ion-acoustic nature are analyzed by means of kinetic Eulerian simulations, in both collision-free and collisional plasmas, composed of kinetic warm protons and linear Boltzmannian electrons. The process of soliton formation is discussed in detail through the description of the time evolution of the electrostatic potential and of the associated phase space portraits of the proton distribution function. We study the effects of collisions on the propagation of solitary waves, by modeling proton-proton interactions through the one-dimensional nonlinear Dougherty operator, which is a collisional operator of the Fokker-Planck type. We show how, in a case of non-negligible collisionality, short spatial scales in the electrostatic potential are dissipated in time and the phase space structures, observed in the distribution function in absence of collisions, are significantly smoothed out. Finally, by exploiting the analogy between ion-acoustic waves in neutral infinite plasma and Trivelpiece-Gould waves in nonneutral plasmas columns, a recipe to observe solitary structures in nonneutral plasma devices is proposed.

Keywords

Soliton Solitary Wave Solitary Structure Phase Space Structure Large Time Limit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A. Mangeney, C. Salem, C. Lacombe, J.L. Bougeret, C. Perche, R. Manning, P.J. Kellogg, K. Goetz, S.J. Monson, J.M. Bosqued, Ann. Geophys. 17, 307 (1999) ADSCrossRefGoogle Scholar
  2. 2.
    D.M. Malaspina, D.L. Newman, L.B. Willson, K. Goetz, P.J. Kellogg, K. Kerstin, J. Geophys. Res. Space Phys. 118, 591 (2013) ADSCrossRefGoogle Scholar
  3. 3.
    G.O. Ludwig, J.L. Ferreira, Y. Nakamura, Phys. Rev. Lett. 52, 275 (1984) ADSCrossRefGoogle Scholar
  4. 4.
    W. Bertsche, J. Fajans, L. Friedland, Phys. Rev. Lett. 91, 265003 (2003) ADSCrossRefGoogle Scholar
  5. 5.
    D. Biskamp, D. Parkinson, Phys. Fluids 13, 2295 (1970) ADSCrossRefGoogle Scholar
  6. 6.
    B. Eliasson, P.K. Shukla, J. Exp. Theor. Phys. Lett. 83, 447 (2006) CrossRefGoogle Scholar
  7. 7.
    F. Valentini, F. Califano, D. Perrone, F. Pegoraro, P. Veltri, Phys. Rev. Lett. 106, 165002 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    R.C. Davidson, Methods in nonlinear plasma theory (Academic Press, New York, London, 1972) Google Scholar
  9. 9.
    P.H. Sakanaka, Phys. Fluids 15, 304 (1972) ADSCrossRefGoogle Scholar
  10. 10.
    Y.V. Medvedev, Plasma Phys. Rep. 15, 63 (2009) Google Scholar
  11. 11.
    Y.V. Medvedev, Plasma Phys. Control. Fusion 56, 025005 (2014) ADSCrossRefGoogle Scholar
  12. 12.
    E. Ott, R.N. Sudan, Phys. Fluids 12, 2388 (1969) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    J.D. Meiss, P.J. Morrison, Phys. Fluids 26, 983 (1983) ADSCrossRefzbMATHGoogle Scholar
  14. 14.
    I.B. Bernstein, J.M. Greene, M.D. Kruskal, Phys. Rev. 108, 546 (1957) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    V.A. Turikov, Phys. Scr. 30, 73 (1984) ADSCrossRefGoogle Scholar
  16. 16.
    F. Valentini, F. Califano, D. Perrone, F. Pegoraro, P. Veltri, Plasma Phys. Control. Fusion 53, 105017 (2011) ADSCrossRefGoogle Scholar
  17. 17.
    H.L. Berk, Transport Theor. Stat. Phys. 34, 205 (2005) ADSCrossRefzbMATHGoogle Scholar
  18. 18.
    N.A. Krall, A.W. Trivelpiece, Principles of Plasma Physics (San Francisco Press, San Francisco, 1986) Google Scholar
  19. 19.
    J.P. Dougherty, Phys. Fluids 7, 1788 (1964) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    M.W. Anderson, T. O’Neil, Phys. Plasmas 14, 112110 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    L.D. Landau, Phys. Z. Sowjet. 10, 154 (1936), translated in Collected papers of L.D. Landau (Pergamon Press, Oxford, 1981), pp. 163–170 Google Scholar
  22. 22.
    O. Pezzi, F. Valentini, D. Perrone, P. Veltri, Phys. Plasmas 20, 092111 (2013) ADSCrossRefGoogle Scholar
  23. 23.
    O. Pezzi, F. Valentini, D. Perrone, P. Veltri, Phys. Plasmas 21, 019901 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    A.W. Trivelpiece, R.W. Gould, J. Appl. Phys. 30, 1784 (1959) ADSCrossRefGoogle Scholar
  25. 25.
    R. Peyret, T.D. Taylor, Computational Methods for Fluid Flow (Springer, New York, 1983) Google Scholar
  26. 26.
    F. Anderegg, C.F. Driscoll, D.H.E. Dubin, T.M. O’Neil, F. Valentini, Phys. Plasmas 16, 055705 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Oreste Pezzi
    • 1
    Email author
  • Francesco Valentini
    • 1
  • Pierluigi Veltri
    • 1
  1. 1.Dipartimento di Fisica and CNISM, Università della CalabriaRendeItaly

Personalised recommendations