Advertisement

Numerical investigation of the threshold intensity dependence on gas pressure in the breakdown of xenon by different laser wavelengths

  • Yosr E. E. -D. Gamal
  • Mohamed Abd El Hameid MahmoudEmail author
  • Nagia D. A. Dawood
Regular Article Plasma Physics

Abstract

We report a theoretical analysis of the measurements that carried out to study the breakdown of xenon gas over a wide pressure range induced by laser source operating at different wavelengths. The study provided an investigation of the effect of laser wavelength as well as gas pressure on the physical processes associated with this phenomenon. To this aim a modified electron cascade model is applied. The model based on the numerical solution of the time dependent Boltzmann equation for the electron energy distribution function (EEDF) simultaneously with a set of rate equations which describe the rate of change of the formed excited states population. Comparison between the calculated and measured threshold intensities for the experimentally tested laser wavelengths and gas pressure range is obtained. Furthermore computations of the EEDF and its parameters showed the actual correlation between the gain and loss processes which determine the threshold breakdown intensity of xenon and the two experimentally tested parameters; laser wavelength and gas pressure.

Keywords

Laser Wavelength Threshold Intensity Excited Atom Electron Energy Distribution Function Multiphoton Ionization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.P. Davis, A.L. Smith, C. Giranda, M. Squicciarini, Appl. Opt. 30, 4358 (1991) ADSCrossRefGoogle Scholar
  2. 2.
    Y.E.E.-D. Gamal, I.M. Azzouz, J. Phys. D 34, 3234 (2001) ADSCrossRefGoogle Scholar
  3. 3.
    J.C. Evans, Y.E.E.-D. Gamal, J. Phys. D 13, 1447 (1980) ADSCrossRefGoogle Scholar
  4. 4.
    R.G. Meyer, A.F. Haught, Phys. Rev. Lett. 11, 401 (1963)ADSCrossRefGoogle Scholar
  5. 5.
    N. Isenor, Can. J. Phys. 42, 1413 (1964) Google Scholar
  6. 6.
    Y. Zel’dovich, Y. Raizer, Sov. Phys. J. Exp. Theor. Phys. 20, 772 (1965)Google Scholar
  7. 7.
    N. Kroll, K.M. Watson, Phys. Rev. A 5, 1883 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    C.G. Morgan, Rep. Prog. Phys. 38, 621 (1975)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Gontier, M. Trahin, Phys. Rev. A 19, 264 (1979)ADSCrossRefGoogle Scholar
  10. 10.
    G. Wely, D. Rosen, J. Wilson, W. Seka, Phys. Rev. A 26, 1164 (1982) ADSCrossRefGoogle Scholar
  11. 11.
    I.C.E. Turcu, M.C. Gower, P. Huntington, Opt. Commun. 134, 66 (1997)ADSCrossRefGoogle Scholar
  12. 12.
    M. Louis-Jacquet, A. Decoster, J. Phys. B 19, 197 (1977)ADSCrossRefGoogle Scholar
  13. 13.
    P.E. Nielson, G.H. Canavan, S.D. Rockwood, Proc. IEEE 59, 709 (1971)CrossRefGoogle Scholar
  14. 14.
    E.J. Button, A. Guenther, Appl. Phys. 47, 522 (1976)CrossRefGoogle Scholar
  15. 15.
    L. Friedland, Phys. Rev. A 12, 202 (1975)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    G.M. Wely, D. Rosen, Phys. Rev. A 31, 2300 (1985) ADSCrossRefGoogle Scholar
  17. 17.
    D. Rosen, G. Wely, J. Phys. D 20, 1264 (1987) ADSCrossRefGoogle Scholar
  18. 18.
    T.X. Phuoc, Opt. Commun. 175, 419 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    Y.E.E.-D. Gamal, M.M. Omar, Radiat. Phys. Chem. 62, 361 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    J.J. Camacho, J.M. Poyato, L. Díaz, M. Santos, J. Phys. B 40, 4573 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    J.J. Camacho, M. Santos, L. Díaz, J.M. Poyato, J. Phys. D 41, 215206 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    Y.E.E.-D. Gamal, M.M. Omar, Egypt. J. Phys. 41, 1 (2011)Google Scholar
  23. 23.
    Y.E.E.-D. Gamal, K.A. El Sayed, M.A. Mahmoud, Opt. Laser Technol. 44, 2154 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    A. Sircar, R.K. Dwivedi, R.K. Thareja, Appl. Phys. B 63, 623 (1996)ADSGoogle Scholar
  25. 25.
    A.J. Alcock, K. Kato, M.C. Richardson, Opt. Commun. 6, 342 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    A.D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)Google Scholar
  27. 27.
    G.J. Pert, J. Phys. A 5, 506 (1972)ADSCrossRefGoogle Scholar
  28. 28.
    M. Hayashi, Nagoya University Report No. IPPJ-AM-19, 1981Google Scholar
  29. 29.
    V. Puech, S. Mizzi, J. Phys. D 24, 1974 (1991) ADSCrossRefGoogle Scholar
  30. 30.
    I.I. Sobel’man, Vvedenie v teoriyu atomnykh spektrov (Introduction to the Theory of Atomic Spectra) (Fizmatgiz, 1963)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yosr E. E. -D. Gamal
    • 1
  • Mohamed Abd El Hameid Mahmoud
    • 2
    Email author
  • Nagia D. A. Dawood
    • 3
  1. 1.National Institute of Laser Enhanced ScienceCairo UniversityEl GizaEgypt
  2. 2.Physics Department, Faculty of ScienceSohag UniversitySohagEgypt
  3. 3.Physics Department, Faculty of ScienceTaibah UniversityAl-madinah Al-monawarahKingdom of Saudi Arabia

Personalised recommendations