RADAMOL tool: Role of radiation quality and charge transfer in damage distribution along DNA oligomer

Regular Article
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy

Abstract

Theoretical modeling is a powerful tool to predict radiation damage of biomolecules such as DNA, proteins and more complex biological targets. In this paper, we present damage distributions along a DNA oligomer irradiated by 10 keV electrons, 1, 2, 5, 10 and 20 MeV protons and alpha particles predicted by the simulation tool RADAMOL. The scavengeable damage of base and deoxyribose moieties due to radical attack is more important in the studied system than unscavengeable ionizations of the DNA target and surrounding bound water layer. Radiation quality does not modify distribution of primary damages along the DNA, but changes overall damage yields. For the first time, electron and hole migration along the DNA macromolecule has been taken into account in the simulation procedure. The effect of these processes on distribution of DNA damages is demonstrated.

References

  1. 1.
    D.E. Lea, Action of Radiations on Living Cells (The Macmillan Co., Cambridge University Press, 1946) Google Scholar
  2. 2.
    C.R. Treadway, M.G. Hill, J.K. Barton, Chem. Phys. 281, 409 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    D. Becker, A. Adhikary, M.D. Sevilla, in Charge migration in DNA, edited by T. Chakraborty (Springer, 2007), pp. 139–175 Google Scholar
  4. 4.
    S.G. Swarts, D. Becker, M. Sevilla, K.T. Wheeler, Radiat. Res. 145, 304 (1996) CrossRefGoogle Scholar
  5. 5.
    B. Giese, Bioorg. Med. Chem. 14, 6139 (2006) CrossRefGoogle Scholar
  6. 6.
    B. Giese, Curr. Opin. Chem. Biol. 6, 612 (2002) CrossRefGoogle Scholar
  7. 7.
    B. Giese, Annu. Rev. Biochem. 71, 51 (2002) CrossRefGoogle Scholar
  8. 8.
    B. Giese, A. Biland, Chem. Commun. 667 (2002) Google Scholar
  9. 9.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F. Cucinotta, Radiat. Meas. 41, 1052 (2006) CrossRefGoogle Scholar
  10. 10.
    W. Friedland, M. Dingfelder, P. Kundrát, P. Jacob, Mutat. Res. Fund. Mol. M. 711, 28 (2011) CrossRefGoogle Scholar
  11. 11.
    W. Friedland, P. Kundrát, Mutat. Res. Gen. Tox. Environ. Mutag. 756, 213 (2013) CrossRefGoogle Scholar
  12. 12.
    R. Taleei, H. Nikjoo, Mutat. Res. Gen. Tox. Environ. Mutag. 756, 206 (2013) CrossRefGoogle Scholar
  13. 13.
    R. Taleei, H. Nikjoo, Radiat. Res. 179, 530 (2013) CrossRefGoogle Scholar
  14. 14.
    J. Meesungnoen, J.P. Jay-Gerin, J. Phys. Chem. A 109, 6406 (2005) CrossRefGoogle Scholar
  15. 15.
    B. Gervais, M. Beuve, G. Olivera, M. Galassi, Radiat. Phys. Chem. 75, 493 (2006) ADSCrossRefGoogle Scholar
  16. 16.
    T. Sato, Y. Kase, R. Watanabe, K. Niita, L. Sihver, Radiat. Res. 171, 107 (2009) CrossRefGoogle Scholar
  17. 17.
    M. Krämer, M. Durante, Eur. Phys. J. D 60, 195 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    S. Agostinelli et al., Nucl. Instrum. Methods A 506, 250 (2003) ADSCrossRefGoogle Scholar
  19. 19.
    S. Incerti et al., Med. Phys. 37, 4692 (2010) CrossRefGoogle Scholar
  20. 20.
    I. Plante, Radiat. Environ. Biophys. 50, 389 (2011) CrossRefGoogle Scholar
  21. 21.
    I. Plante, Radiat. Environ. Biophys. 50, 405 (2011) CrossRefGoogle Scholar
  22. 22.
    M. Karamitros, Ph.D. thesis, University of Bordeaux 1, France, 2012, http://www.theses.fr/2012BOR14629
  23. 23.
    M. Karamitros et al., J. Comput. Phys. 274, 841 (2014) ADSCrossRefGoogle Scholar
  24. 24.
    E.A. Bigildeeev, V. Michalik, Radiat. Phys. Chem. 47, 197 (1996) ADSCrossRefGoogle Scholar
  25. 25.
    J. Allison et al., IEEE T. Nucl. Sci. 53, 270 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    V. Michalik, M. Begusova, E.A. Bigildeev, Radiat. Res. 149, 224 (1998) CrossRefGoogle Scholar
  27. 27.
    M. Begusova, S. Giliberto, J. Gras, D. Sy, M. Charlier, M. Spotheim-Maurizot, Int. J. Radiat. Biol. 79, 385 (2003) CrossRefGoogle Scholar
  28. 28.
    M.S. Kreipl, W. Friedland, H.G. Paretzke, Radiat. Environ. Biophys. 48, 349 (2009) CrossRefGoogle Scholar
  29. 29.
    E. Surdutovich, A.V. Yakubovich, A.V. Solov’yov, Eur. Phys. J. D 60, 101 (2010) ADSCrossRefGoogle Scholar
  30. 30.
    H. Nikjoo, D.E. Charlton, D.T. Goodhead, Adv. Space Res. 14, 161 (1994) ADSCrossRefGoogle Scholar
  31. 31.
    D.E. Charlton, H. Nikjoo, J.L. Humm, Int. J. Radiat. Biol. 56, 1 (1989) CrossRefGoogle Scholar
  32. 32.
    D. Liljequist, H. Nikjoo, Radiat. Phys. Chem. 99, 45 (2014) ADSCrossRefGoogle Scholar
  33. 33.
    E. Alizadeh, L. Sanche, J. Phys. Chem. C 117, 22445 (2013) CrossRefGoogle Scholar
  34. 34.
    E. Alizadeh, A.G. Sanz, G. Garcìa, L. Sanche, J. Phys. Chem. Lett. 4, 820 (2013) CrossRefGoogle Scholar
  35. 35.
    A. Ito, H. Nakano, Y. Kusano, R. Hirayama, Y. Furusawa, C. Murayama, T. Mori, Y. Katsumura, K. Shinohara, Radiat. Res. 165, 703 (2006) CrossRefGoogle Scholar
  36. 36.
    M. Davídková, M. Spotheim-Maurizot, in Radiation Chemistry: From basics to applications in material and life sciences, edited by M. Spotheim-Maurizot, M. Mostafavi, T. Douki, J. Belloni (EDP Sciences, 2008), pp. 277–289 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Université Bordeaux 1, CNRS/IN2P3, Centre d’Études Nucléaires de Bordeaux-Gradignan, CENBG, Chemin du SolariumGradignanFrance
  2. 2.Department of Radiation DosimetryNuclear Physics Institute of the ASCRPragueCzech Republic

Personalised recommendations