A strategy to suppress recurrence in grid-based Vlasov solvers

  • Lukas EinkemmerEmail author
  • Alexander Ostermann
Regular Article
Part of the following topical collections:
  1. Topical issue: Theory and Applications of the Vlasov Equation


In this paper we propose a strategy to suppress the recurrence effect present in grid-based Vlasov solvers. This method is formulated by introducing a cutoff frequency in Fourier space. Since this cutoff only has to be performed after a number of time steps, the scheme can be implemented efficiently and can relatively easily be incorporated into existing Vlasov solvers. Furthermore, the scheme proposed retains the advantage of grid-based methods in that high accuracy can be achieved. This is due to the fact that in contrast to the scheme proposed by Abbasi et al. no statistical noise is introduced into the simulation. We will illustrate the utility of the method proposed by performing a number of numerical simulations, including the plasma echo phenomenon, using a discontinuous Galerkin approximation in space and a Strang splitting based time integration.


Discontinuous Galerkin Method Recurrence Time Vlasov Equation Velocity Direction Constant Approxi 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M.R. Fahey, J. Candy, GYRO: A 5-D gyrokinetic-Maxwell solver, in Proceedings of the ACM/IEEE SC2004 Conference, Pittsburg, USA, 2004 Google Scholar
  2. 2.
    F. Filbet, E. Sonnendrücker, Comput. Phys. Commun. 150, 247 (2003)ADSzbMATHGoogle Scholar
  3. 3.
    R.E. Heath, I.M. Gamba, P.J. Morrison, C. Michler, J. Comput. Phys. 231, 1140 (2012)ADSzbMATHMathSciNetGoogle Scholar
  4. 4.
    A. Mangeney, F. Califano, C. Cavazzoni, P. Travnicek, J. Comput. Phys. 179, 495 (2002)ADSzbMATHMathSciNetGoogle Scholar
  5. 5.
    C. Cheng, G. Knorr, J. Comput. Phys. 22, 330 (1976)ADSGoogle Scholar
  6. 6.
    T.D. Arber, R.G.L. Vann, J. Comput. Phys. 180, 339 (2002)ADSzbMATHGoogle Scholar
  7. 7.
    E. Sonnendrücker, J. Roche, P. Bertrand, A. Ghizzo, J. Comput. Phys. 149, 201 (1999)ADSzbMATHMathSciNetGoogle Scholar
  8. 8.
    F. Huot, A. Ghizzo, P. Bertrand, E. Sonnendrücker, O. Coulaud, J. Comput. Phys. 185, 512 (2003)ADSzbMATHMathSciNetGoogle Scholar
  9. 9.
    H. Abbasi, M. Jenab, H. Hakimi Pajouh, Phys. Rev. E 84, 036702 (2011)ADSGoogle Scholar
  10. 10.
    L. Einkemmer, A. Ostermann, SIAM J. Numer. Anal. 52, 757 (2014)MathSciNetGoogle Scholar
  11. 11.
    S. Joe, F.Y. Kuo, ACM Trans. Math. Software 29, 49 (2003)zbMATHMathSciNetGoogle Scholar
  12. 12.
    A.J. Klimas, W.M. Farrell, J. Comput. Phys. 110, 150 (1994)ADSzbMATHMathSciNetGoogle Scholar
  13. 13.
    B. Eliasson, J. Comput. Phys. 181, 98 (2002)ADSzbMATHMathSciNetGoogle Scholar
  14. 14.
    E. Faou, A. Ostermann, K. Schratz, to appear in IMA J. Numer. Anal.Google Scholar
  15. 15.
    J.A. Rossmanith, D.C. Seal, J. Comput. Phys. 230, 6203 (2011)ADSzbMATHMathSciNetGoogle Scholar
  16. 16.
    N. Crouseilles, T. Respaud, E. Sonnendrücker, Comput. Phys. Commun. 180, 1730 (2009)ADSzbMATHGoogle Scholar
  17. 17.
    G. Manfredi, Phys. Rev. Lett. 79, 2815 (1997)ADSGoogle Scholar
  18. 18.
    R.W. Gould, T.M. O’Neil, J.H. Malmberg, Phys. Rev. Lett. 19, 219 (1967)ADSGoogle Scholar
  19. 19.
    Y.W. Hou, Z.W. Ma, M.Y. Yu, Phys. Plasmas 18, 012108 (2011)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of InnsbruckInnsbruckAustria

Personalised recommendations