Radiosensitization of DNA in presence of Pt(II)-based compounds

  • Małgorzata A. ŚmiałekEmail author
  • Sylwia Ptasińska
  • Jason Gow
  • Chiara Da Pieve
  • Nigel J. Mason
Open Access
Regular Article
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy


X-ray irradiation of plasmid DNA in presence of platinum (II)-based compounds was carried out in order to assess the radiosensitization capabilities of these drugs. In present investigations pBR322 plasmid DNA was used to monitor the effectiveness of chosen compounds in inducing strand breaks. Samples were incubated in the presence of potential radiosensitisers: platinum (II) bromide and cis-diamminedibromoplatinum (II). The results were examined against a common cancer chemotherapy drug cis-diamminedichloroplatinum (II). It was found that platinum (II) bromide can greatly increase the levels of single- and double-strand break formation observed in the irradiated samples with respect to the samples containing platinum as a radiosensitizer only, possessing very little chemotherapeutic activity. The suggested drugs exhibit much higher level of radiosensitivity than widely used cisplatin and thus may be good candidates for cancer treatment.


Damage Level Secondary Particle Dissociative Electron Attachment Tungsten Anode Induce Strand Break 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    T.S. Lawrence, A.W. Blackstock, C. McGinn, Semin. Radiat. Oncol. 13, 13 (2003) CrossRefGoogle Scholar
  2. 2.
    Y.P. Ho, S.C.F. Au-Yeung, K.K.W. To, Med. Res. Rev. 23, 633 (2003) CrossRefGoogle Scholar
  3. 3.
    J. Reedijk, Eur. J. Inorg. Chem. 2009, 1303 (2009) CrossRefGoogle Scholar
  4. 4.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000) ADSCrossRefGoogle Scholar
  5. 5.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011) ADSCrossRefGoogle Scholar
  6. 6.
    L. Sanche, in Radiation Damage in Biomolecular Systems, edited by G. García Gómez-Tejedor (Springer, 2012) Google Scholar
  7. 7.
    M. Rezaee, J.D. Hunting, L. Sanche, Int. J. Radiat. Biol. 80, 841 (2004) CrossRefGoogle Scholar
  8. 8.
    G. Chu, J. Biol. Chem. 269, 787 (1994) Google Scholar
  9. 9.
    M. Rezaee, D.J. Hunting, L. Sanche, Int. J. Radiat. Oncol. Biol. Phys. 87, 847 (2013) CrossRefGoogle Scholar
  10. 10.
    M. Maeda, K. Kobayashi, K. Hieda, Int. J. Radiat. Biol. 80, 841 (2004) CrossRefGoogle Scholar
  11. 11.
    C. Le Sech, K. Takakura, C. Saint-Marc, H. Frohlich, M. Charlier, N. Usami, K. Kobayashi, Radiat. Res. 153, 454 (2000) CrossRefGoogle Scholar
  12. 12.
    A.T.C. Chan, S.F. Leung, R.K.C. Ngan, P.M.L. Teo, W.H. Lau, W.H. Kwan, E.P. Hui, H.Y. Yiu, W. Yeo, F.Y. Cheung, K.H. Yu, K.W. Chiu, D.T. Chan, T.S.K. Mok, S. Yau, K.T. Yuen, F.K.F. Mo, M.M.P. Lai, B.B.Y. Ma, M.K.M. Kam, T.W.T. Leung, P.J. Johnson, P.H. Choi, B.C. Zee, J. Natl. Cancer Instit. 97, 536 (2005) CrossRefGoogle Scholar
  13. 13.
    M.R. Detty, S.L. Gibson, S.J. Wagner, J. Med. Chem. 47, 3897 (2004) CrossRefGoogle Scholar
  14. 14.
    M.A. Bagshaw, R.L. Doggett, K.C. Smith, H.S. Kaplan, T.S. Nelsen, Am. J. Roentgenol. Radium Therapy Nucl. Med. 99, 886 (1967) CrossRefGoogle Scholar
  15. 15.
    M.A. Śmiałek, S.V. Hoffmann, M. Folkard, K.M. Prise, D.E.G. Shuker, N.S. Braithwaite, N.J. Mason, Radiat. Damage Biomol. Syst. 101, 12020 (2008) Google Scholar
  16. 16.
    M.A. Śmiałek, S.A. Moore, N.J. Mason, D.E.G. Shuker, Radiat. Res. 172, 529 (2009) CrossRefGoogle Scholar
  17. 17.
    K. Kobayashi, N. Usami, I. Sasaki, H. Frohlich, C. Le Sech, Nucl. Instrum. Methods Phys. Res. B 199, 348 (2003) ADSCrossRefGoogle Scholar
  18. 18.
    M.A. Śmiałek, R. Balog, N.C. Jones, D. Field, N.J. Mason, Eur. Phys. J. D 60, 31 (2010) ADSCrossRefGoogle Scholar
  19. 19.
    K. Nakamoto, P.J. McCarthy, J. Fujita, R.A. Condrate, G.T. Behnke, Inorg. Chem. 4, 36 (1965) CrossRefGoogle Scholar
  20. 20.
    M.A. Śmiałek, N.C. Jones, R. Balog, N.J. Mason, D. Field, Eur. Phys. J. D 62, 197 (2011) ADSCrossRefGoogle Scholar
  21. 21.
    NIST Chemistry WebBook,
  22. 22.
    S.J. Lippard, Pure Appl. Chem. 59, 731742 (1987) CrossRefGoogle Scholar
  23. 23.
    K. Tanzer, A. Pelc, S. Huber, M.A. Śmiałek, P. Scheier, M. Probst, S. Denifl, Int. J. Mass Spectrom. (2013), in press, Scholar
  24. 24.
    L. Nahon, P. Morin, F. Combetfarnoux, Phys. Scr. 41, 104 (1992) CrossRefGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • Małgorzata A. Śmiałek
    • 1
    • 2
    Email author
  • Sylwia Ptasińska
    • 3
  • Jason Gow
    • 2
  • Chiara Da Pieve
    • 4
  • Nigel J. Mason
    • 2
  1. 1.Gdańsk University of Technology, Faculty of Ocean Engineering and Ship Technology, Department of Control and Energy EngineeringGdańskPoland
  2. 2.Department of Physical SciencesThe Open UniversityMilton KeynesUK
  3. 3.Radiation Laboratory and Department of Physics, University of Notre DameNotre DameUSA
  4. 4.Department of LifeHealth and Chemical Sciences, The Open UniversityMilton KeynesUK

Personalised recommendations