Advertisement

Influence of metal ion complexation on the metastable fragmentation of DNA hexamers

  • Andreas Piekarczyk
  • Ilko BaldEmail author
  • Helga D. Flosadóttir
  • Benedikt Ómarsson
  • Anne Lafosse
  • Oddur IngólfssonEmail author
Regular Article
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy

Abstract

Here, we study the metastable decay of 5′-d(TTGCTT) in the presence of 0–6 alkaline metal ions (Li+, Na+, K+, Rb+) and 0−3 alkaline earth metal ions (Mg2+ and Ca2 +), which replace the corresponding number of protons in the oligonucleotide. We find that all ions studied here stabilize the oligonucleotide with respect to simple 3′-C–O backbone cleavage, but at the same time these metal ions promote a central oligonucleotide deletion accompanied by a concomitant recombination of the terminal d(TT) groups. We find that the quenching of the 3′-C–O backbone cleavage is not ion specific, since it is due to the removal of the phosphate protons upon replacement with the respective metal ions. The central nucleotide deletion competes with the 3′-C–O backbone cleavage channels and is thus promoted through the replacement of the exchangeable protons against metal ions. However, with increasing positive charge density of the metal ions the yield of the central nucleotide deletion further increases. We attribute this effect to the necessity of sufficient proximity of the terminal d(TT) group to allow for their recombination on this reaction path. Hence, the formation of a reactive conformer is mediated by the metal ions.

Keywords

Backbone Cleavage Electro Spray Ionization Fragmentation Channel Exchangeable Proton Base Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J. Müller, Metallomics 2, 318 (2010) CrossRefGoogle Scholar
  2. 2.
    M.A. Young, B. Jayaram, D.L. Beveridge, J. Am. Chem. Soc. 119, 59 (1997) CrossRefGoogle Scholar
  3. 3.
    X.Q. Shui, L. McFail-Isom, G.G. Hu, L.D. Williams, Biochemistry 37, 8341 (1998) CrossRefGoogle Scholar
  4. 4.
    F.C. Marincola, V.P. Denisov, B. Halle, J. Am. Chem. Soc. 126, 6739 (2004) CrossRefGoogle Scholar
  5. 5.
    N.B. Leontis, P. Ghosh, P.B. Moore, Biochemistry 25, 7386 (1986) CrossRefGoogle Scholar
  6. 6.
    C.C. Correll, B. Freeborn, P.B. Moore, T.A. Steitz, Cell 91, 705 (1997) CrossRefGoogle Scholar
  7. 7.
    M.J. Serra, J.D. Baird, T. Dale, B.L. Fey, K. Retatagos, E. Westhof, RNA 8, 307 (2002) CrossRefGoogle Scholar
  8. 8.
    S. Basu, R.P. Rambo, J. Strauss-Soukup, J.H. Cate, A.R. Ferre-D’Amare, S.A. Strobel, J.A. Doudna, Nat. Struct. Biol. 5, 986 (1998) CrossRefGoogle Scholar
  9. 9.
    D.M.J. Lilley, R.M. Clegg, Ann. Rev. Biophys. Biomol. Struct. 22, 299 (1993) CrossRefGoogle Scholar
  10. 10.
    B. Lippert, D. Gupta, Dalton Trans. 24, 4619 (2009) CrossRefGoogle Scholar
  11. 11.
    P. Schultze, N.V. Hud, F.W. Smith, J. Feigon, Nucleic Acids Res. 27, 3018 (1999) CrossRefGoogle Scholar
  12. 12.
    P.W.K. Rothemund, Nature 440, 297 (2006) ADSCrossRefGoogle Scholar
  13. 13.
    A. Keller, I. Bald, A. Rotaru, E. Cauet, K.V. Gothelf, F. Besenbacher, ACS Nano 6, 4392 (2012) CrossRefGoogle Scholar
  14. 14.
    J. Gidden, E.S. Baker, A. Ferzoco, M.T. Bowers, Int. J. Mass Spectrom. 240, 183 (2005) ADSCrossRefGoogle Scholar
  15. 15.
    V. Gabelica, E. De Pauw, J. Mass Spectrom. 36, 397 (2001) CrossRefGoogle Scholar
  16. 16.
    P.D. Schnier, J.S. Klassen, E.E. Strittmatter, E.R. Williams, J. Am. Chem. Soc. 120, 9605 (1998) CrossRefGoogle Scholar
  17. 17.
    F. Rosu, V. Gabelica, C. Houssier, P. Colson, E. De Pauw, Rapid Commun. Mass Spectrom. 16, 1729 (2002) CrossRefGoogle Scholar
  18. 18.
    D.R. Goodlett, D.G. Camp, C.C. Hardin, M. Corregan, R.D. Smith, Biol. Mass Spectrom. 22, 181 (1993) CrossRefGoogle Scholar
  19. 19.
    H.D. Flosadóttir, B. Omarsson, I. Bald, O. Ingólfsson, Eur. Phys. J. D 66, 13 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    I. Bald, H.D. Flosadóttir, B. Omarsson, O. Ingólfsson, Int. J. Mass Spectrom. 313, 15 (2012) CrossRefGoogle Scholar
  21. 21.
    H.D. Flosadóttir, K. Gislason, S.T. Sigurdsson, O. Ingólfsson, J. Am. Soc. Mass Spectrom. 23, 690 (2012) CrossRefGoogle Scholar
  22. 22.
    H.D. Flosadóttir, M. Stano, O. Ingólfsson, J. Am. Soc. Mass Spectrom. 20, 689 (2009) CrossRefGoogle Scholar
  23. 23.
    M. Stano, H.D. Flosadóttir, O. Ingólfsson, Rapid Commun. Mass Spectrom. 20, 3498 (2006) CrossRefGoogle Scholar
  24. 24.
    R.D. Shannon, Acta Crystallogr. A 32, 751 (1976) ADSCrossRefGoogle Scholar
  25. 25.
    S.A. McLuckey, G.J. Vanberkel, G.L. Glish, J. Am. Soc. Mass Spectrom. 3, 60 (1992) CrossRefGoogle Scholar
  26. 26.
    E.P.L. Hunter, S.G. Lias, J. Phys. Chem. Ref. Data 27, 413 (1998) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Andreas Piekarczyk
    • 1
  • Ilko Bald
    • 1
    • 2
    • 3
    Email author
  • Helga D. Flosadóttir
    • 1
  • Benedikt Ómarsson
    • 1
  • Anne Lafosse
    • 4
  • Oddur Ingólfsson
    • 1
    Email author
  1. 1.Science Institute, Department of Chemistry, University of IcelandReykjavíkIceland
  2. 2.Institute of Chemistry – Physical Chemistry, University of PotsdamPotsdamGermany
  3. 3.BAM Federal Institute of Materials Research and TestingBerlinGermany
  4. 4.Univ. Paris-Sud, Institut des Sciences Moléculaires d’Orsay (ISMO), UMR 8214OrsayFrance

Personalised recommendations