Theoretical evaluation of diffusion coefficients of (Al2O3)n clusters in different bath gases

  • Alexander S. Sharipov
  • Boris I. Loukhovitski
  • Chuen-Jinn Tsai
  • Alexander M. StarikEmail author
Regular Article


The binary diffusion coefficients of two low lying isomers of (Al2O3) n , n = 1...4, clusters in different bath gases, that most frequently met in the nature and in the technical applications: H2, N2, O2, CO, H2O as well as their self-diffusion coefficients have been calculated on the basis of kinetic theory and dipole reduced formalism. The parameters of interaction potential have been determined taking into account the contributions of a dispersion, dipole-dipole and dipole-induced dipole interactions between alumina clusters and bath molecules. The dipole moments, polarizabilities and collision diameters of clusters have been obtained by using quantum chemical calculations of cluster structure. The approximations for temperature dependencies of diffusion coefficients for two low-lying isomers of each considered alumina clusters are reported. It is demonstrated that an account for the contributions of the second for each type of clusters does not affect substantially the value of net diffusion coefficient. The diffusion coefficients of the isomers of small (Al2O3) n clusters can differ notably in the case when their dipole moments are distinct and they interact with strongly dipole molecules.


Clusters and Nanostructures 


  1. 1.
    Nanodust in the Solar System: Discoveries and Interpretations, Astrophysics and Space Science Library, edited by I. Mann, N. Meyer-Vernet, A. Czechowski (Springer, Berlin, Heidelberg, 2012), Vol. 385Google Scholar
  2. 2.
    T. Henning, Chem. Soc. Rev. 27, 315 (1998)CrossRefGoogle Scholar
  3. 3.
    H.K. Kammler, L. Madler, S.E. Pratsinis, Chem. Eng. Technol. 24, 583 (2001)CrossRefGoogle Scholar
  4. 4.
    V.V. Karasev, A.A. Onischuk, O.G. Glotov, A.M. Baklanov, A.G. Maryasov, V.E. Zarko, V.N. Panfilov, A.I. Levykin, K.K. Sabelfeld, Combust. Flame 138, 40 (2004)CrossRefGoogle Scholar
  5. 5.
    A.M. Savel’ev, A.M. Starik, Tech. Phys. 51, 444 (2006)CrossRefGoogle Scholar
  6. 6.
    A.M. Starik, A.M. Savel’ev, N.S. Titova, Plasma Sources Sci. Technol. 17, 045012 (2008)ADSCrossRefGoogle Scholar
  7. 7.
    M. Stephens, T. Sammet, E. Petersen, R. Carro, S. Wolf, C. Smith, J. Propuls. Power 26, 461 (2010)CrossRefGoogle Scholar
  8. 8.
    D.L. Reid, K.R. Kreitz, M.A. Stephens, J.E.S. King, P. Nachimuthu, E.L. Petersen, S. Seal, J. Phys. Chem. C 115, 10412 (2011)CrossRefGoogle Scholar
  9. 9.
    K. Ostrikov, A.B. Murphy, J. Phys. D 40, 2223 (2007)ADSCrossRefGoogle Scholar
  10. 10.
    M.T. Swihart, Curr. Opin. Colloid Interface Sci. 8, 127 (2003)CrossRefGoogle Scholar
  11. 11.
    K. Ostrikov, Rev. Mod. Phys. 77, 489 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    W.W. Stoffels, E. Stoffels, G. Ceccone, F. Rossi, J. Vac. Sci. Technol. A 17, 3385 (1999)ADSCrossRefGoogle Scholar
  13. 13.
    M. Vitiello, S. Amoruso, C. Altucci, C. de Lisio, X. Wang, Appl. Surf. Sci. 248, 163 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1954)Google Scholar
  15. 15.
    I.G. Kaplan, Intermolecular Interactions: Physical Picture, Computational Methods and Model Potentials (Wiley, Hoboken, 2006)Google Scholar
  16. 16.
    A.J. Stone, A.J. Misquitta, Int. Rev. Phys. Chem. 26, 193 (2007)CrossRefGoogle Scholar
  17. 17.
    M. Shadman, S. Yeganegi, F. Ziaie, Chem. Phys. Lett. 467, 237 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    A.K. Rappe, E.R. Bernstein, J. Phys. Chem. A 104, 6117 (2000)CrossRefGoogle Scholar
  19. 19.
    P. Bucher, R.A. Yetter, F.L. Dryer, T.P. Parr, D.M. Hanson-Parr, Proc. Combust. Inst. 27, 2421 (1998)CrossRefGoogle Scholar
  20. 20.
    P. Bucher, R.A. Yetter, F.L. Dryer, E.P. Vicenzi, T.P. Parr, D.M. Hanson-Parr, Combust. Flame 117, 351 (1999)CrossRefGoogle Scholar
  21. 21.
    M. Jones, C.H. Li, A. Afjeh, G.P. Peterson, Nanoscale Res. Lett. 6, 246 (2011)ADSCrossRefGoogle Scholar
  22. 22.
    T. Kozasa, H. Hasegawa, Prog. Theor. Phys. 77, 1402 (1987)ADSCrossRefGoogle Scholar
  23. 23.
    M. Capitelli, A. Laricchiuta, D. Bruno, Fundamental Aspects of Plasma Chemical Physics: Transport (Springer, 2013)Google Scholar
  24. 24.
    L. Salem, Mol. Phys. 3, 441 (1960)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    P.D. Neufeld, A.R. Janzen, R.A. Aziz, J. Chem. Phys. 57, 1100 (1972)ADSCrossRefGoogle Scholar
  26. 26.
    M. Capitelli, C. Gorse, S. Longo, D. Giordano, J. Thermophys. Heat Transfer 14, 259 (2000)CrossRefGoogle Scholar
  27. 27.
    A. D’Angola, G. Colonna, C. Gorse, M. Capitelli, Eur. Phys. J. D 46, 129 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    N.J. Brown, L.A.J. Bastien, P.N. Price, Prog. Energy Combust. Sci. 37, 565 (2011)CrossRefGoogle Scholar
  29. 29.
    F. Pirani, M. Alberti, A. Castro, M. Moix Teixidor, D. Cappelletti, Chem. Phys. Lett. 394, 37 (2004)ADSCrossRefGoogle Scholar
  30. 30.
    M. Capitelli, D. Cappelletti, G. Colonna, C. Gorse, A. Laricchiuta, G. Liuti, S. Longo, F. Pirani, Chem. Phys. 338, 62 (2007)ADSCrossRefGoogle Scholar
  31. 31.
    A. Laricchiuta, G. Colonna, D. Bruno, R. Celiberto, R. Gorse, F. Pirani, M. Capitelli, Chem. Phys. Lett. 445, 133 (2007)ADSCrossRefGoogle Scholar
  32. 32.
    P. Paul, J. Warnatz, Proc. Combust. Inst. 27, 495 (1998)CrossRefGoogle Scholar
  33. 33.
    J.O. Hirschfelder, M.A. Eliason, Ann. N.Y. Acad. Sci. 67, 451 (1957)ADSCrossRefGoogle Scholar
  34. 34.
    R.A. Svehla, Estimated viscosities and thermal conductivities of gases at high temperatures, NASA Tech Rep R-132, 1962Google Scholar
  35. 35.
    A.S. Sharipov, N.S. Titova, A.M. Starik, Combust. Theory Model. 16, 842 (2012)ADSCrossRefGoogle Scholar
  36. 36.
    E. Purcell, Electricity and Magnetism: Berkeley Physics Course (Cambridge University Press, Cambridge, 2011)Google Scholar
  37. 37.
    R. Cambi, D. Cappelletti, G. Liuti, G. Pirani, J. Chem. Phys. 95, 1852 (1991)ADSCrossRefGoogle Scholar
  38. 38.
    A.S. Sharipov, B.I. Loukhovitski, A.M. Starik, Phys. Scr. 88, 058307 (2013)ADSCrossRefGoogle Scholar
  39. 39.
    R.D. Johnson III, NIST Computational Chemistry Comparison and Benchmark Database NIST Standard Reference Database Number 101 Release 15a, 2010Google Scholar
  40. 40.
    J. Bzowski, J. Kestin, E.A. Mason, F.J. Uribe, J. Phys. Chem. Ref. Data 19, 1179 (1990)ADSCrossRefGoogle Scholar
  41. 41.
    H. Wang, M. Frenklach, Combust. Flame 96, 163 (1994)CrossRefGoogle Scholar
  42. 42.
    R.J. Kee et al., Chemkin Collection, Release 3.6, Reaction Design, Inc., San Diego, CA (2000)Google Scholar
  43. 43.
    C.L. Kong, J. Chem. Phys. 59, 968 (1973)ADSCrossRefGoogle Scholar
  44. 44.
    L.A.J. Bastien, P.N. Price, N.J. Brown, Int. J. Chem. Kinet. 42, 713 (2010)CrossRefGoogle Scholar
  45. 45.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  46. 46.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  47. 47.
    W. Koch, M.C. Holthausen, A Chemist’s Guide to Density Functional Theory (Wiley-VCH Verlag GmbH, 2001)Google Scholar
  48. 48.
    J.S. Wright, C.N. Rowley, L.L. Chepelev, Mol. Phys. 103, 815 (2005)ADSCrossRefGoogle Scholar
  49. 49.
    A.A. Granovsky, Firefly V 7.1.G, 2007Google Scholar
  50. 50.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  51. 51.
    H.Y. Kim, J.O. Sofo, D. Velegol, M.W. Cole, G. Mukhopadhyay, Phys. Rev. A 72, 053201 (2005)ADSCrossRefGoogle Scholar
  52. 52.
    A.A. Westenberg, Combust. Flame 1, 346 (1957)CrossRefGoogle Scholar
  53. 53.
    A.P. Babichev, N.A. Babushkina, A.M. Bratkovskii, Handbook of Physical Quantities (Energoatomizdat, Moscow, 1991), in RussianGoogle Scholar
  54. 54.
    L.R. Fokin, A.N. Kalashnikov, High Temp. 46, 614 (2008)CrossRefGoogle Scholar
  55. 55.
    M.J. Frisch, M. Head-Gordon, J.A. Pople, Chem. Phys. Lett. 166, 275 (1990)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alexander S. Sharipov
    • 1
    • 2
  • Boris I. Loukhovitski
    • 1
    • 2
  • Chuen-Jinn Tsai
    • 3
  • Alexander M. Starik
    • 1
    • 2
    Email author
  1. 1.Central Institute of Aviation MotorsMoscowRussia
  2. 2.Scientific Educational Centre Physical-Chemical Kinetics and CombustionMoscowRussia
  3. 3.Institute of Environmental EngineeringNational Chiao Tung University No.1001HsinchuTaiwan

Personalised recommendations