Efficient calculation of local dose distributions for response modeling in proton and heavier ion beams

  • Steffen Greilich
  • Ute Hahn
  • Markus Kiderlen
  • Claus E. Andersen
  • Niels Bassler
Regular Article
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy

Abstract

We present an algorithm for fast and accurate computation of the local dose distribution in MeV beams of protons, carbon ions or other heavy charged particles. It uses compound Poisson modeling of track interaction and successive convolutions for fast computation. It can handle arbitrary complex mixed particle fields over a wide range of fluences. Since the local dose distribution is the essential part of several approaches to model detector efficiency and cellular response it has potential use in ion-beam dosimetry, radiotherapy, and radiobiology.

Keywords

Dose Distribution Linear Energy Transfer Single Track Local Dose Heavy Charged Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.J. Butts, R. Katz, Radiat. Res. 30, 855 (1967)CrossRefGoogle Scholar
  2. 2.
    R. Katz, S.C. Sharma, M. Homayoonfar, The structure of particle tracks, in Topics in Radiation Dosimetry, edited by F.H. Attix (Academic Press, New York, 1972), Chap. 6, pp. 317–383Google Scholar
  3. 3.
    T. Elsässer, M. Krämer, M. Scholz, Int. J. Radiat. Oncol. Biol., Phys. 71, 866 (2008)CrossRefGoogle Scholar
  4. 4.
    M.P.R. Waligórski, R. Katz, Nucl. Instrum. Methods 172, 463 (1980)ADSCrossRefGoogle Scholar
  5. 5.
    O. Ávila, I. Gamboa-deBuen, M.E. Brandan, J. Phys. D 32, 1175 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    J. Kalef-Ezra, Y.S. Horowitz, Int. J. Appl. Radiat. Isot. 33, 1085 (1982)CrossRefGoogle Scholar
  7. 7.
    B. Spielberger, M. Scholz, M. Krämer, G. Kraft, Phys. Med. Biol. 47, 4107 (2002)CrossRefGoogle Scholar
  8. 8.
    O.B. Geiss, M. Krämer, G. Kraft, Nucl. Instrum. Methods Phys. Res. B 142, 592 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    N. Bassler, J.W. Hansen, H. Palmans, M.H. Holzscheiter, S. Kovacevic, Nucl. Instrum. Methods Phys. Res. B 266, 929 (2008)ADSCrossRefGoogle Scholar
  10. 10.
    R. Herrmann, O. Jäkel, H. Palmans, P. Sharpe, N. Bassler, Med. Phys. 38, 1859 (2011)CrossRefGoogle Scholar
  11. 11.
    R. Herrmann, S. Greilich, L. Grzanka, N. Bassler, Radiat. Meas. 46, 1551 (2011)CrossRefGoogle Scholar
  12. 12.
    N. Bassler, Ph.D. thesis, Aarhus University, 2006)Google Scholar
  13. 13.
    C.E. Andersen, S.K. Nielsen, S. Greilich, J. Helt-Hansen, J.C. Lindegaard, K. Tanderup, Med. Phys. 36, 708 (2009)CrossRefGoogle Scholar
  14. 14.
    J. Edmund, C. Andersen, S. Greilich, Nucl. Instrum. Methods Phys. Res. B 21, 261 (2007)ADSCrossRefGoogle Scholar
  15. 15.
    S. Greilich, J.M. Edmund, M. Jain, C.E. Andersen, Radiat. Meas. 43, 1049 (2008)CrossRefGoogle Scholar
  16. 16.
    H. Paganetti, M. Goitein, Int. J. Radiat. Biol. 77, 911 (2001)CrossRefGoogle Scholar
  17. 17.
    A.M. Kellerer, in The Dosimetry of Ionizing Radiation, edited by K.R. Kase, B.E. Bjärngard, F.H. Attix (Academic Press, London, 1985), Chap. 2Google Scholar
  18. 18.
    H. Nikjoo, S. Uehara, D. Emfietzoglou, F. Cucinotta, Radiat. Meas. 41, 1052 (2006)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Steffen Greilich
    • 1
  • Ute Hahn
    • 2
  • Markus Kiderlen
    • 2
  • Claus E. Andersen
    • 3
  • Niels Bassler
    • 4
  1. 1.Division of Medical Physics in Radiation OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Department of MathematicsAarhus UniversityAarhus CDenmark
  3. 3.Center for Nuclear TechnologiesTechnical University of DenmarkRoskildeDenmark
  4. 4.Department of Physics and AstronomyAarhus UniversityAarhus CDenmark

Personalised recommendations