Theoretical investigation of the binding of a positron to vibrational excited states of hydrogen cyanide molecule

Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

We theoretically analyzed positron affinities (PA) of hydrogen cyanide (HCN) molecule at vibrational excited states to elucidate the effect of molecular vibrations on the binding of a positron to the molecule. Using the configuration interaction method in the multi-component molecular orbital theory and anharmonic vibrational state analysis with the variational Monte Carlo technique, we found that the vibrational excitations of the CN and CH stretching modes enhance the PA value compared to that of the vibrational ground state, whereas the excitation of bending mode deenhances it. The largest PA enhancement is found at the excited states of the CH stretching mode; the PA values are 43.02 (1) and 46.34 (2) meV for the fundamental tone and overtone states, respectively. With the linear regression analysis, we confirmed that the PA variation of HCN molecule at each vibrational state arises from the variation of permanent dipole moment and dipole-polarizability due to each vibrational excitation.

References

  1. 1.
    M. Charlton, J.W. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001) Google Scholar
  2. 2.
    P.G. Coleman, Positron Beams and Their Applications (World Scientific, Singapore, 2000) Google Scholar
  3. 3.
    D.W. Gidley, D.Z. Chi, W.D. Wang, R.S. Vallery, Annu. Rev. Mater. Sci. 36, 49 (2006) ADSCrossRefGoogle Scholar
  4. 4.
    C.M. Surko, G.F. Gribakin, S.J. Buckman, J. Phys. B 38, R57 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    J.R. Danielson, J.A. Young, C.M. Surko, J. Phys. B 42, 235203 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    J.A. Young, C.M. Surko, Phys. Rev. A 77, 052704 (2008) ADSCrossRefGoogle Scholar
  7. 7.
    J.A. Young, C.M. Surko, Phys. Rev. A 78, 032702 (2008) ADSCrossRefGoogle Scholar
  8. 8.
    O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967) ADSCrossRefGoogle Scholar
  9. 9.
    P.E. Cade, A. Farazdel, J. Chem. Phys. 66, 2598 (1977) ADSCrossRefGoogle Scholar
  10. 10.
    M. Tachikawa, K. Mori, K. Suzuki, K. Iguchi, Int. J. Quantum Chem. 70, 491 (1998) CrossRefGoogle Scholar
  11. 11.
    M. Tachikawa, H. Sainowa, K. Iguchi, K. Suzuki, J. Chem. Phys. 101, 5925 (1994) ADSCrossRefGoogle Scholar
  12. 12.
    T. Saito, M. Tachikawa, C. Ohe, K. Iguchi, K. Suzuki, J. Phys. Chem. 100, 6057 (1994) CrossRefGoogle Scholar
  13. 13.
    S.L. Saito, F. Sasaki, J. Chem. Phys. 102, 8040 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001) ADSCrossRefGoogle Scholar
  15. 15.
    M.W.J. Bromley, J. Mitroy, Phys. Rev. A 65, 062505 (2002) ADSCrossRefGoogle Scholar
  16. 16.
    M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 119, 5005 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    M. Tachikawa, R.J. Buenker, M. Kimura, J. Chem. Phys. 121, 9191 (2004) ADSCrossRefGoogle Scholar
  18. 18.
    K. Strasburger, Struct. Chem. 15, 415 (2004) CrossRefGoogle Scholar
  19. 19.
    H. Chojnacki, K. Strasburger, Mol. Phys. 104, 2273 (2006) ADSCrossRefGoogle Scholar
  20. 20.
    R.J. Buenker, H.-P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura, J. Phys. Chem. A 109, 5956 (2005) CrossRefGoogle Scholar
  21. 21.
    F.A. Gianturco, J. Franz, R.J. Buenker, H.-P. Liebermann, L. Pichl, J.-M. Rost, M. Tachikawa, M. Kimura, Phys. Rev. A 73, 022705 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    K. Strasburger, J. Chem. Phys. 114, 00615 (2001) ADSCrossRefGoogle Scholar
  23. 23.
    S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    J. Mitroy, Phys. Rev. A 73, 054502 (2006) ADSCrossRefGoogle Scholar
  25. 25.
    D.M. Schrader, T. Yoshida, K. Iguchi, Phys. Rev. Lett. 68, 3281 (1992) ADSCrossRefGoogle Scholar
  26. 26.
    D.M. Schrader, T. Yoshida, K. Iguchi, J. Chem. Phys. 98, 7185 (1993) ADSCrossRefGoogle Scholar
  27. 27.
    N. Jiang, D.M. Schrader, J. Chem. Phys. 109, 9430 (1998) ADSCrossRefGoogle Scholar
  28. 28.
    D. Bressanini, M. Mella, G. Morosi, J. Chem. Phys. 108, 4756 (1998) ADSCrossRefGoogle Scholar
  29. 29.
    M. Mella, M. Casalegno, G. Morosi, J. Chem. Phys. 117, 1450 (2002) ADSCrossRefGoogle Scholar
  30. 30.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009) ADSCrossRefGoogle Scholar
  31. 31.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011) ADSCrossRefGoogle Scholar
  32. 32.
    J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010) ADSCrossRefGoogle Scholar
  33. 33.
    J.R. Danielson, A.C.L. Jones, J.J. Gosselin, M.R. Natisin, C.M. Surko, Phys. Rev. A 85, 022709 (2012) ADSCrossRefGoogle Scholar
  34. 34.
    M. Tachikawa, Y. Kita, R.J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011) CrossRefGoogle Scholar
  35. 35.
    B.L. Hammond, W.A. Lester Jr., P.J. Reynolds, Monte Carlo Methods in Ab Initio Quantum Chemistry (World Scientific, Singapore, 1994) Google Scholar
  36. 36.
    J.K.G. Watson, Mol. Phys. 15, 479 (1968) ADSCrossRefGoogle Scholar
  37. 37.
    T. Watanabe, Trans. Jpn Soc. Ind. Appl. Math. 1, 101 (1991) Google Scholar
  38. 38.
    J.M. Bowman, J. Chem. Phys. 68, 608 (1977) ADSCrossRefGoogle Scholar
  39. 39.
    J. Toulouse, C.J. Umrigar, J. Chem. Phys. 126, 084102 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    J. Toulouse, C.J. Umrigar, J. Chem. Phys. 128, 174101 (2008) ADSCrossRefGoogle Scholar
  41. 41.
    M.J. Frisch et al., GAUSSIAN 03, Revision E.01 (Gaussian Inc., Wallingford CT, 2004) Google Scholar
  42. 42.
    G.Ch. Mellau, J. Chem. Phys. 134, 234303 (2011) ADSCrossRefGoogle Scholar
  43. 43.
    K.M. Christoffel, J.M. Bowman, Chem. Phys. Lett. 85, 220 (1982) ADSCrossRefGoogle Scholar
  44. 44.
    A.B. McCoy, Int. Rev. Phys. Chem. 25, 77 (2006) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Quantum Chemistry Division, Yokohama City UniversityYokohamaJapan

Personalised recommendations