Stopping cross sections of TiO2 for H and He ions

  • Silvina P. Limandri
  • Raul C. Fadanelli
  • Moni Behar
  • Luiz C. C. M. Nagamine
  • José M. Fernández-Varea
  • Isabel Abril
  • Rafael Garcia-Molina
  • Claudia C. Montanari
  • Julio C. Aguiar
  • Darío Mitnik
  • Jorge E. Miraglia
  • Néstor R. Arista
Regular Article

Abstract

Stopping cross sections of TiO2 films were measured for H and He ions in the energy intervals 200–1500 keV and 250–3000 keV, respectively, using the Rutherford backscattering technique. Theoretical calculations were performed by means of two versions of the dielectric formalism and a non-linear model. Good agreement is found between the present experimental data and the theoretical results at intermediate and high energies, and also with the very limited experimental information available in the literature.

Keywords

Atomic and Molecular Collisions 

References

  1. 1.
    Materials Modification by High-fluence Ion Beams, NATO-ASI Series E: Applied Sciences, edited by R. Kelly, M.F. da Silva (Kluwer Academic Publishers, Dordrecht, 1989), Vol. 155Google Scholar
  2. 2.
    S.A. Campbell, The Science and Engineering of Microelectronic Fabrication (Oxford University Press, Oxford, 1996)Google Scholar
  3. 3.
    M. Nastasi, J.W. Mayer, J.K. Hirvonen, Ion-Solid Interactions: Fundamentals and Applications (Cambridge University Press, Cambridge, 1996)Google Scholar
  4. 4.
    J.K.N. Lindner, A.N. Larsen, J.M. Poate, E.E.B. Campbell, R. Kelly, G. Marletta, M. Toulemonde, F. Priolo, New Trends in Ion Beam Processing of Materials and Beam Induced Nanometric Phenomena (European Materials Research Society Symposia Proceedings) (Elsevier, 1997), Vol. 65Google Scholar
  5. 5.
    Materials Science with Ion Beams, edited by H. Bernas (Springer, Berlin, 2010)Google Scholar
  6. 6.
    D. Schardt, T. Elsässer, D. Schulz-Ertner, Rev. Mod. Phys. 82, 383 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    Proton Therapy Physics, edited by H. Paganetti (CRC Press, Boca Raton, 2012)Google Scholar
  8. 8.
    Theory of Heavy Ion Collision Physics in Hadron Therapy, Advances in Quantum Chemistry, edited by Dz. Belkic (Elsevier, Amsterdam, 2013), Vol. 65Google Scholar
  9. 9.
    Application of Accelerators in Research and Industry: Twenty-Second International Conference, edited by F.D. McDaniel, B.L. Doyle, G.A. Glass, Y. Wang, in AIP Conf. Proc., Vol. 1525 (2013)Google Scholar
  10. 10.
    E. Rauhala, N.P. Barradas, S. Fazinic, M. Mayer, E. Szilágyi, M. Thompson, Nucl. Instrum. Methods Phys. Res. B 244, 436 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    International Commission on Radiation Units and Measurements, Stopping Powers and Ranges for Protons and Alpha Particles, ICRU Report 49 (ICRU, Bethesda, MD, 1993)Google Scholar
  12. 12.
    H. Paul, Stopping Power for Light Ions, http://www.exphys.jku.at/stopping/
  13. 13.
    W. Neuwirth, W. Pietsch, K. Richter, U. Hauser, Z. Phys. A 275, 215 (1975)ADSCrossRefGoogle Scholar
  14. 14.
    R.B. Brown, D. Powers, J. Appl. Phys. 50, 5099 (1979)ADSCrossRefGoogle Scholar
  15. 15.
    P. Bauer, D. Semrad, Adv. Quantum Chem. 46, 153 (2004)ADSCrossRefGoogle Scholar
  16. 16.
    U. Diebold, Surf. Sci. Rep. 48, 53 (2003)ADSCrossRefGoogle Scholar
  17. 17.
    M. Ni, M.K.H. Leung, D.Y.C. Leung, K. Sumathy, Renew. Sustain. Energy Rev. 11, 401 (2007)Google Scholar
  18. 18.
    X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)CrossRefGoogle Scholar
  19. 19.
    D. Kowalski, D. Kim, P. Schmuki, Nano Today 8, 235 (2013)CrossRefGoogle Scholar
  20. 20.
    A.L. Stepanov, Rev. Adv. Mater. Sci. 30, 150 (2012)Google Scholar
  21. 21.
    C.P. Race, D.R. Mason, M.W. Finnis, W.M.C. Foulkes, A.P. Horsfield, A.P. Sutton, Rep. Prog. Phys. 73, 116501 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    H. Kido, T. Hioki, Phys. Rev. B 27, 2667 (1983)ADSCrossRefGoogle Scholar
  23. 23.
    M. Laube, F. Rauch, C. Ottermann, O. Anderson, K. Bange, Nucl. Instrum. Methods Phys. Res. B 113, 288 (1996)ADSCrossRefGoogle Scholar
  24. 24.
    N.P. Barradas, E. Alves, Z. Siketic, I. Bogdanovic Radovic, Nucl. Instrum. Methods Phys. Res. B 273, 22 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.F. Ziegler, J. Biersack, SRIM-2012, The Stopping and Range of Ions in Matter, version 2012, code available from http://www.srim.org
  26. 26.
    A.J.G. Leenaers, D.K.G. de Boer, X-Ray Spectrom. 26, 115 (1997)Google Scholar
  27. 27.
    L.C.C.M. Nagamine, A. Biondo, L.G. Pereira, A. Mello, J.E. Schmidt, T.W. Chimendes, J.B.M. Cunha, E.B. Saitovitch, J. Appl. Phys. 94, 5881 (2003)ADSGoogle Scholar
  28. 28.
    K. Drogowska, Z. Tarnawski, A. Brudnik, E. Kusior, M. Sokolowski, K. Zakrzewska, A. Reszka, N.-T.H. Kim-Ngan, A.G. Balogh, Mater. Res. Bull. 47, 296 (2012)Google Scholar
  29. 29.
    W.K. Chu, J.W. Mayer, M.A. Nicolet, Backscattering Spectrometry (Academic Press, New York, 1978)Google Scholar
  30. 30.
    G.H. Lantschner, J.C. Eckardt, A.F. Lifschitz, N.R. Arista, L.L. Araujo, P.F. Duarte, J.H.R. dos Santos, M. Behar, J.F. Dias, P.L. Grande, C.C. Montanari, J.E. Miraglia, Phys. Rev. A 69, 062903 (2004)ADSGoogle Scholar
  31. 31.
    S. Heredia-Avalos, R. Garcia-Molina, J.M. Fernández-Varea, I. Abril, Phys. Rev. A 72, 052902 (2005)ADSGoogle Scholar
  32. 32.
    G. Schiwietz, P.L. Grande, Nucl. Instrum. Methods Phys. Res. B 175, 125 (2001)ADSGoogle Scholar
  33. 33.
    J. Lindhard, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 288(8), (1954)Google Scholar
  34. 34.
    D. Emfietzoglou, in Interaction of Radiation with Matter edited by H. Nikjoo, S. Uehara, D. Emfietzoglou (CRC Press, Boca Raton, 2012), Section IIIGoogle Scholar
  35. 35.
    C.C. Montanari, D.M. Mitnik, J.E. Miraglia, Radiat. Eff. Defects Solids 166, 338 (2011)Google Scholar
  36. 36.
    P. de Vera, I. Abril, R. Garcia-Molina, J. Appl. Phys. 109, 094901 (2010)Google Scholar
  37. 37.
    R. Garcia-Molina, I. Abril, I. Kyriakou, D. Emfietzoglou, in Radiation Damage in Biomolecular Systems, Biological and Medical Physics, Biomedical Engineering, edited by G.G. Gómez-Tejedor, M.C. Fuss (Springer, Dordrecht, 2012), Chap. 15Google Scholar
  38. 38.
    N.D. Mermin, Phys. Rev. B 1, 2362 (1970)ADSGoogle Scholar
  39. 39.
    C.D. Denton, I. Abril, J.C. Moreno-Marín, S. Heredia-Avalos, R. Garcia-Molina, Phys. Stat. Sol. B 245, 1498 (2008)ADSGoogle Scholar
  40. 40.
    L.K. Dash, F. Bruneval, V. Trinité, N. Vast, L. Reining, Comput. Mater. Sci. 38, 482 (2007)Google Scholar
  41. 41.
    G.G. Fuentes, E. Elizalde, F. Yubero, J.M. Sanz, Surf. Interf. Anal. 33, 230 (2002)Google Scholar
  42. 42.
    M. Landmann, T. Köhler, S. Köppen, E. Rauls, T. Frauenheim, W.G. Schmidt, Phys. Rev. B 86, 064201 (2012)ADSGoogle Scholar
  43. 43.
    The Electronic Handbook of Optical Constants of Solids edited by E.D. Palik, G. Ghosh (Academic Press, San Diego, 1999)Google Scholar
  44. 44.
    International Commission on Radiation Units and Measurements, Stopping Powers for Electrons and Positrons, ICRU Report 37 (ICRU, Bethesda, MD, 1984)Google Scholar
  45. 45.
    Z.H. Levine, S.G. Louie, Phys. Rev. B 25, 6310 (1982)ADSGoogle Scholar
  46. 46.
    E.D. Cantero, R.C. Fadanelli, C.C. Montanari, M. Behar, J.C. Eckardt, G.H. Lantschner, J.E. Miraglia, N.R. Arista, Phys. Rev. A 79, 042904 (2009)ADSGoogle Scholar
  47. 47.
    C.C. Montanari, J.E. Miraglia, in Theory of Heavy Ion Collision Physics in Hadron Therapy, Advances in Quantum Chemistry, edited by Dz. Belkic (Elsevier, Amsterdam, 2013), Vol. 65, Chap. 7Google Scholar
  48. 48.
    N. Troullier, J.L. Martins, Phys. Rev. B 43, 1993 (1991)ADSGoogle Scholar
  49. 49.
    J.C. Aguiar, H.O. Di Rocco, D. Mitnik, J. Phys. Chem. Solids 74, 1341 (2013)ADSGoogle Scholar
  50. 50.
    CRC Handbook of Chemistry and Physics, edited by D.R. Lide, 89th edn. (CRC Press, Boca Raton, 2009)Google Scholar
  51. 51.
    A. Gupta, Ph.D. thesis, University of Rajasthan, Jaipur, 1987Google Scholar
  52. 52.
    K.B. Joshi, B.K. Sharma, J. Alloys Compd. 440, 51 (2007)Google Scholar
  53. 53.
    C.E. Ekuma, D. Bagayoko, Jpn J. Appl. Phys. 50, 101103 (2011)ADSGoogle Scholar
  54. 54.
    N. Vast, L. Reining, V. Olevano, P. Schattschneider, B. Jouffrey, Phys. Rev. Lett. 88, 037601 (2002)ADSGoogle Scholar
  55. 55.
    A.F. Lifschitz, N.R. Arista, Phys. Rev. A 57, 200 (1998)ADSGoogle Scholar
  56. 56.
    L. de Ferrariis, N.R. Arista, Phys. Rev. A 29, 2145 (1984)ADSGoogle Scholar
  57. 57.
    H.B. Nersisyan, A.K. Das, Nucl. Instrum. Methods Phys. Res. B 227, 455 (2005)ADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Silvina P. Limandri
    • 1
  • Raul C. Fadanelli
    • 2
  • Moni Behar
    • 2
  • Luiz C. C. M. Nagamine
    • 3
  • José M. Fernández-Varea
    • 4
  • Isabel Abril
    • 5
  • Rafael Garcia-Molina
    • 6
  • Claudia C. Montanari
    • 7
  • Julio C. Aguiar
    • 8
  • Darío Mitnik
    • 7
  • Jorge E. Miraglia
    • 7
  • Néstor R. Arista
    • 1
  1. 1.Centro Atómico BarilocheSan Carlos de BarilocheArgentina
  2. 2.Instituto de FísicaUniversidade Federal do Rio Grande do SulPorto AlegreBrazil
  3. 3.Instituto de FísicaUniversidade de São PauloSão Paulo, São PauloBrazil
  4. 4.Facultat de Física (ECM and ICC)Universitat de BarcelonaBarcelonaSpain
  5. 5.Departament de Física AplicadaUniversitat d’AlacantAlacantSpain
  6. 6.Departamento de Física-CIOyN, Regional Campus of International Excellence “Campus Mare Nostrum”Universidad de MurciaMurciaSpain
  7. 7.Instituto de Astronomía y Física del Espacio, CONICET and Facultad de Ciencias Exactas y NaturalesUniversidad de Buenos AiresBuenos AiresArgentina
  8. 8.Autoridad Regulatoria NuclearBuenos AiresArgentina

Personalised recommendations