Advertisement

Low-energy-electron interactions with DNA: approaching cellular conditions with atmospheric experiments

  • Elahe AlizadehEmail author
  • Léon Sanche
Regular Article
Part of the following topical collections:
  1. Topical Issue: Nano-scale Insights into Ion-beam Cancer Therapy

Abstract

A novel technique has been developed to investigate low energy electron (LEE)-DNA interactions in the presence of small biomolecules (e.g., N2, O2, H2O) found near DNA in the cell nucleus, in order to simulate cellular conditions. In this technique, LEEs are emitted from a metallic surface exposed by soft X-rays and interact with DNA thin films at standard ambient temperature and pressure (SATP). Whereas atmospheric N2 had little effect on the yields of LEE-induced single and double strand breaks, both O2 and H2O considerably modified and increased such damage. The highest yields were obtained when DNA is embedded in a combined O2 and H2O atmosphere. In this case, the amount of additional double strand breaks was supper-additive. The effect of modifying the chemical and physical stability of DNA by platinum-based chemotherapeutic agents (Pt-drugs) including cisplatin, carboplatin and oxaliplatin was also investigated with this technique. The results obtained provide information on the role played by subexcitation-energy electrons and dissociative electron attachment in the radiosensitization of DNA by Pt-drugs, which is an important step to unravel the mechanisms of radiosensitisation of these agents in chemoradiation cancer therapy.

Keywords

Oxaliplatin Tantalum Enhancement Factor Relative Humidity Level Dissociative Electron Attachment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    L. Sanche, Chem. Phys. Lett. 474, 1 (2009) and references thereinADSCrossRefGoogle Scholar
  2. 2.
    J.A. LaVerne, S.M. Pimblott, Radiat. Res. 141, 208 (1995)CrossRefGoogle Scholar
  3. 3.
    Biomolecular Action of Ionizing Radiation, edited by S. Lehnert (Taylor and Francis, New York, 2008)Google Scholar
  4. 4.
    L. Sanche, in Radical and Radical Ion Reactivity in Nucleic Acid Chemistry, edited by M.M. Greenberg (John Wiley & Sons, 2009), pp. 239–293Google Scholar
  5. 5.
    S.M. Pimblott, J.A. LaVerne, Radiat. Phys. Chem. 76, 1244 (2007)ADSCrossRefGoogle Scholar
  6. 6.
    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    E. Alizadeh, L. Sanche, Chem. Rev. 112, 5578 (2012)CrossRefGoogle Scholar
  9. 9.
    T. Douki, J. Cadat, in Radiation Chemistry, from Basics to Applications in Material and Life Sciences, edited by M. Spotheim-Maurizot, M. Mostafavi, T. Douki, J. Belloni (EDP Sciences, Les Ulis, 2008), pp. 177–189Google Scholar
  10. 10.
    M. Spotheim-Maurizot, M. Davídková, J. Phys.: Conf. Ser. 261, 012010 (2011)ADSGoogle Scholar
  11. 11.
    L. Sanche, in Radiation Damage in Biomolecular Systems, edited by Garcia G. Gomez-Tejedor, M.C. Fuss (Springer Sciences, Dordrecht, 2012), pp. 3–43Google Scholar
  12. 12.
    Free-Radical-Induced DNA Damage and Its Repair, edited by C. von Sonntag (Springer-Verlag, Berlin, 2006)Google Scholar
  13. 13.
    S. Ptasińska, L. Sanche, Phys. Rev. E 75, 031915 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    X. Pan, P. Cloutier, D.J. Hunting, L. Sanche, Phys. Rev. Lett. 90, 208102 (2003)ADSCrossRefGoogle Scholar
  15. 15.
    M. Bazin, S. Ptasińska, A.D. Bass, L. Sanche, Phys. Chem. Chem. Phys. 11, 1610 (2009)CrossRefGoogle Scholar
  16. 16.
    T.M. Orlando, D. Oh, Y. Chen, A.B. Aleksandrov, J. Chem. Phys. 128, 195102 (2008)ADSCrossRefGoogle Scholar
  17. 17.
    G.A. Grieves, J.L. McLain, T.M. Orlando, in Charged Particle and Photon Interactions with Matter, Recent Advances, Applications, and Interfaces, edited by Y. Hatano, Y. Katsumura, A. Mozumder (CRC Press, Boca Raton, 2011), pp. 473–501Google Scholar
  18. 18.
    N. Mirsaleh Kohan, A.D. Bass, P. Cloutier, S. Massey, L. Sanche, J. Chem. Phys. 136, 235104 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    S. Massey, A.D. Bass, M. Steffenhagen, L. Sanche, Langmuir 29, 5222 (2013)CrossRefGoogle Scholar
  20. 20.
    A. Dumont, Y. Zheng, D.J. Hunting, L. Sanche, J. Chem. Phys. 132, 045102 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    T. Solomun, T. Skalicky, Chem. Phys. Lett. 453, 101 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    E. Brun, P. Cloutier, C. Sicard-Roselli, M. Fromm, L. Sanche, J. Phys. Chem. B 113, 10008 (2009)CrossRefGoogle Scholar
  23. 23.
    Z. Cai, P. Cloutier, D.J. Hunting, L. Sanche, J. Phys. Chem. B 109, 4796 (2005)CrossRefGoogle Scholar
  24. 24.
    E. Alizadeh, P. Cloutier, D.J. Hunting, L. Sanche, J. Phys. Chem. B 115, 4523 (2011)CrossRefGoogle Scholar
  25. 25.
    QIAprepR◯Miniprep Handbook, www.qiagen.com
  26. 26.
    K.L. Manchester, BioTechniques 20, 968 (1996)Google Scholar
  27. 27.
    H. Nikjoo, L. Lindborg, Phys. Med. Biol. 55, R65 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    The Biochemistry of the Nucleic Acids, edited by R.L.P. Adams, T. Knowler, D.P. Leader (Chapman & Hall, 1986)Google Scholar
  29. 29.
    M. Hoshi, D.T. Goodhead, D.J. Brenner, D.A. Bance, J.J. Chmielewski, M.A. Paciotti, J.N. Bradbur, Phys. Med. Biol. 30, 1029 (1985)CrossRefGoogle Scholar
  30. 30.
    M.A. Huels, B. Boudaïffa, P. Cloutier, D.J. Hunting, L. Sanche, J. Am. Chem. Soc. 125, 4467 (2003)CrossRefGoogle Scholar
  31. 31.
    M.A. Śmiałek, N.C. Jones, R. Balog, N.J. Mason, D. Field, Eur. Phys. J. D 62, 197 (2011)ADSCrossRefGoogle Scholar
  32. 32.
    Z. Cai, X. Pan, D.J. Hunting, P. Cloutier, R. Lemay, L. Sanche, Phys. Med. Biol. 48, 4111 (2003)CrossRefGoogle Scholar
  33. 33.
    H.S. Rye, S. Yue, M.A. Quesada, R.P. Haugland, R.A. Mathies, A.N. Glazer, Meth. Enzymol. 217, 414 (1992)CrossRefGoogle Scholar
  34. 34.
    Radiation Chemistry, Principles and Applications, edited by Farhataziz, M.A.J. Rodgers (VCH, New York, 1987)Google Scholar
  35. 35.
    National Institute of Standards & Technology, NIST, http://physics.nist.gov/PhysRefData/XrayMassCoef/
  36. 36.
    E. Alizadeh, P. Cloutier, D.J. Hunting, L. Sanche, in Proceeding of the 2nd Conference on Nanotechnology, Fundamentals and Applications, Ottawa, Canada, 2011 Google Scholar
  37. 37.
    E. Alizadeh, L. Sanche, Radiat. Phys. Chem. 81, 33 (2012)ADSCrossRefGoogle Scholar
  38. 38.
    E. Alizadeh, A.G. Sanz, G. Garcia, L. Sanche, J. Phys. Chem. Lett. 4, 820 (2013)CrossRefGoogle Scholar
  39. 39.
    R. Roots, A. Chatterjee, E. Blakely, P. Chang, K. Smith, C. Tobias, Radiat. Res. 92, 245 (1982)CrossRefGoogle Scholar
  40. 40.
    A. Samuni, G. Czapski, Radiat. Res. 76, 624 (1978)CrossRefGoogle Scholar
  41. 41.
    D. Ewing, H.L. Walton, D.S. Guilfoil, M.B. Ohm, Int. J. Radiat. Biol. 59, 717 (1991)CrossRefGoogle Scholar
  42. 42.
    E. Alizadeh, L. Sanche, J. Phys. Chem. B 115, 14852 (2011)CrossRefGoogle Scholar
  43. 43.
    E. Alizadeh, L. Sanche, Radiat. Prot. Dosim. 151, 591 (2012)CrossRefGoogle Scholar
  44. 44.
    J.E. Hearst, J. Vinograd, Proc. Natl. Acad. Sci. USA 47, 825 (1961)ADSCrossRefGoogle Scholar
  45. 45.
    Principles of Nucleic Acid Structure, edited by W. Saenger (Springer-Verlag, New York, 1984)Google Scholar
  46. 46.
    Hydration Bonding in Biological Structures, edited by G. Jeffrey, W. Saenger (Springer-Verlag, New York, 1991)Google Scholar
  47. 47.
    S.G. Swarts, M.D. Sevilla, D. Becker, C.J. Tokar, K.T. Wheeler, Radiat. Res. 129, 333 (1992)CrossRefGoogle Scholar
  48. 48.
    K.R. Siefermann, Y. Liu, E. Lugovoy, O. Link, M. Faubel, U. Buck, B. Winter, B. Abel, Nat. Chem. 2, 274 (2010)CrossRefGoogle Scholar
  49. 49.
    K.R. Siefermann, B. Abel, Angew. Chem. Int. Ed. 50, 5264 (2011)CrossRefGoogle Scholar
  50. 50.
    E. Alizadeh, L. Sanche, J. Phys. Chem. C 117, 22445 (2013)CrossRefGoogle Scholar
  51. 51.
    T.Y. Seiwert, J.K. Salama, E.E. Vokes, Nat. Clin. Pract. Oncol. 4, 86 (2007)CrossRefGoogle Scholar
  52. 52.
    A.J. Mundt, Int. J. Radiat. Oncol. 82, 1040 (2012)CrossRefGoogle Scholar
  53. 53.
    M.G. Fury, N.Y. Lee, E. Sherman, D. Lisa, K. Kelly, B. Lipson, D. Carlson, H. Stambuk, S. Haque, R. Shen, D. Kraus, J. Shah, D.G. Pfister, Cancer 118, 5008 (2012)CrossRefGoogle Scholar
  54. 54.
    M.L. Mierzwa, M.K. Nyati, M.A. Morgan, T.S. Lawrence, Oncologist 15, 372 (2010)CrossRefGoogle Scholar
  55. 55.
    A. Spalding, T. Lawrence, Cancer Invest. 24, 444 (2006)CrossRefGoogle Scholar
  56. 56.
    Y. Zheng, D.J. Hunting, P. Ayotte, L. Sanche, Phys. Rev. Lett. 100, 198101 (2008)ADSCrossRefGoogle Scholar
  57. 57.
    M. Rezaee, D.J. Hunting, L. Sanche, Int. J. Radiat. Oncol. Biol. Phys. 87, 847 (2013)CrossRefGoogle Scholar
  58. 58.
    M. Rezaee, E. Alizadeh, D.J. Hunting, L. Sanche, Bioinorg. Chem. Appl. 2012, 923914 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Group of Radiation Sciences, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health SciencesUniversity of SherbrookeSherbrookeCanada

Personalised recommendations