Advertisement

First principle study of the sensitivity of CO adsorption on pure and binary clusters of lead and silicon

  • Pabitra Narayan Samanta
  • Kalyan Kumar DasEmail author
Regular Article

Abstract

The interactions of a CO molecule with pure and binary clusters of Pb and Si up to five atoms are theoretically investigated. The lowest-energy isomers of metal cluster carbonyl complexes are obtained by global optimization of the potential energy hypersurface using Monte Carlo simulation coupled with simulated annealing followed by pseudopotential based plane wave density functional theory (DFT) calculations, and then by local optimization using hybrid DFT calculations at the B3LYP/ aug-cc-pVTZ-pp level of theory. The CO binding energies and Gibbs free energy changes (ΔG) are computed to determine the kinetic and thermodynamic stability of the metal cluster-CO complexes. The variations of adsorption energy, HOMO-LUMO energy gap, and NBO charge on the CO fragment with the size of the metal clusters are reported. The linear correlations among different parameters such as C–O bond elongation, changes in the C–O stretching frequency, and NBO charge on CO are established to confirm the CO adsorption on various pure and binary clusters of Pb and Si.

Keywords

Clusters and Nanostructures 

Supplementary material

10053_2014_886_MOESM1_ESM.pdf (93 kb)
Supplementary material, approximately 93.1 KB.

References

  1. 1.
    R.L. Johnston, Philos. Trans. R. Soc. Lond. Ser. A 356, 211 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    R.L. Johnston, Atomic and Molecular Clusters (Taylor and Francis, London, 2002)Google Scholar
  3. 3.
    J.A. Alonso, Chem. Rev. 100, 637 (2000)CrossRefGoogle Scholar
  4. 4.
    A. Bourane, O. Dulaurent, D. Bianchi, J. Catal. 196, 115 (2000)CrossRefGoogle Scholar
  5. 5.
    O. Dulaurent, X. Courtois, V. Perrichon, D. Bianchi, J. Phys. Chem. B 104, 600 (2000)CrossRefGoogle Scholar
  6. 6.
    O. Dulaurent, M. Nawdali, A. Bourane, D. Bianchi, Appl. Catal. A: Gen. 201, 271 (2000)CrossRefGoogle Scholar
  7. 7.
    A. Bourane, M. Nawdali, D. Bianchi, J. Phys. Chem. B 106, 2665 (2002)CrossRefGoogle Scholar
  8. 8.
    S. Derrouiche, P. Gravejat, D. Bianchi, J. Am. Chem. Soc. 126, 13010 (2004)CrossRefGoogle Scholar
  9. 9.
    S. Derrouiche, D. Bianchi, Appl. Catal. A: Gen. 313, 208 (2006)CrossRefGoogle Scholar
  10. 10.
    C. Song, Q. Ge, L. Wang, J. Phys. Chem. B 109, 22341 (2005)CrossRefGoogle Scholar
  11. 11.
    A.M. Joshi, W.N. Delgass, K.T. Thomson, J. Phys. Chem. B 110, 23373 (2006)CrossRefGoogle Scholar
  12. 12.
    A.M. Joshi, M.H. Tucker, W.N. Delgass, K.T. Thomson, J. Chem. Phys. 125, 194707 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    C.D. Zeinalipour-Yazdi, A.L. Cooksy, A.M. Efstathion, Surf. Sci. 602, 1858 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    B. Kalita, R.C. Deka, Eur. Phys. J. D 53, 51 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    G.J. Kang, Z.X. Chen, Z. Li, X. He, J. Chem. Phys. 130, 034701 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    F. Wang, D. Zhang, Y. Ding, J. Phys. Chem. C 114, 14076 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Du, G. Wu, J. Wang, J. Phys. Chem. A 114, 10508 (2010)CrossRefGoogle Scholar
  18. 18.
    S.L. Peng, L.Y. Gan, R.Y. Tian, Y.J. Zhao, Comput. Theor. Chem. 977, 62 (2011)CrossRefGoogle Scholar
  19. 19.
    D.M. Popolan, M. Nössler, R. Mitric, T.M. Bernhardt, V. Bonaèiæ Koutecký, J. Phys. Chem. A 115, 951 (2011)CrossRefGoogle Scholar
  20. 20.
    J.D. Haeck, N. Veldeman, P. Claes, E. Janssens, M. Andersson, P. Lievens, J. Phys. Chem. A 115, 2103 (2011)CrossRefGoogle Scholar
  21. 21.
    Y. Wang, G. Wu, J. Du, M. Yang, J. Wang, J. Phys. Chem. A 116, 93 (2012)CrossRefGoogle Scholar
  22. 22.
    B.X. Li, P.L. Cao, J. Phys.: Condens. Matter 12, 8357 (2000)ADSGoogle Scholar
  23. 23.
    L. Zhang, J. Dong, M. Zhou, J. Chem. Phys. 113, 8700 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    M. Zhou, L. Jiang, Q. Xu, J. Chem. Phys. 121, 10474 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    M. Zhou, L. Jiang, Q. Xu, J. Phys. Chem. A 109, 3325 (2005)CrossRefGoogle Scholar
  26. 26.
    L. Jiang, Q. Xu, Bull. Chem. Soc. Jpn 79, 857 (2006)CrossRefGoogle Scholar
  27. 27.
    L. Jiang, Q. Xu, J. Chem. Phys. 122, 0345051 (2005)Google Scholar
  28. 28.
    Q. Xu, L. Jiang, Inorg. Chem. 45, 8648 (2006)CrossRefGoogle Scholar
  29. 29.
    M. Nahali, F. Gobal, Mol. Phys. 108, 1317 (2010)ADSCrossRefGoogle Scholar
  30. 30.
    P.N. Samanta, K.K. Das, Mol. Phys. 111, 31 (2013)ADSCrossRefGoogle Scholar
  31. 31.
    N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)ADSCrossRefGoogle Scholar
  32. 32.
    S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Science 220, 671 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    M. Valiev, E.J. Bylaska, N. Govind, K. Kowalski, T.P. Straatsma, H.J.J. Van Dam, D. Wang, J. Nieplocha, E. Apra, T.L. Windus, W.A. de Jong, Comput. Phys. Commun. 181, 1477 (2010)ADSCrossRefzbMATHGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    A.D. Becke, J. Chem. Phys. 98, 1372 (1993)ADSCrossRefGoogle Scholar
  36. 36.
    A.D. Becke, J. Chem. Phys. 98, 5648 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37, 785 (1988)ADSCrossRefGoogle Scholar
  38. 38.
    M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, revision E.01 (Gaussian Inc., Wallingford, CT, 2004)Google Scholar
  39. 39.
    W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, in Ab Initio Molecular Orbital Theory (Wiley, New York, 1986), pp. 226–261Google Scholar
  40. 40.
    J.W. Ochterski, Thermochemistry in Gaussian (Gaussian, Inc., 2000)Google Scholar
  41. 41.
    K.B. Wiberg, Tetrahedron 24, 1083 (1968)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Chemistry, Physical Chemistry SectionJadavpur UniversityKolkataIndia

Personalised recommendations