Advertisement

Structural, electronic and optical properties of 7-atom Ag-Cu nanoclusters from density functional theory

  • Weiyin Li
  • Fuyi ChenEmail author
Regular Article

Abstract

The structures and electronic properties of 7-atom silver and copper bimetallic clusters are systematically investigated by density functional theory (DFT) in the theoretical frame of the generalised gradient approximation (GGA) exchange-correlation functional. Optical absorption, Raman spectra, as well as vibrational spectra are calculated by DFT/GGA and semi-core pseudopotentials. The lowest-energy stable motifs are primarily related to the quantity of Cu-Cu bonds and Ag-Cu bonds. The Ag5Cu2 2-I with D 5h symmetry cluster is the lowest energy cluster in the family of the 7-atom Ag-Cu nanoclusters, but has the lowest electronic stability. The Ag5Cu2 2-I, Ag4Cu3 3-I and Ag3Cu4 4-I clusters with mixed motifs indicate that silver and copper may be miscible on the nanoscale but not in bulk. Overall, with increasing Cu atoms, for the lowest energy nanoclusters, blue-shift of the maximum absorption peaks presents in the UV-Vis wavelength range, the intensities of the maximum peak of the Raman spectra weaken, the Cu atom(s) introduced make the vibrational spectra complex, and the intensities of the vibrational spectra strengthen. The calculated vibrational and Raman spectroscopy of 7-atom Ag-Cu clusters may be helpful in determining the size and structure of the experimental cluster.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    G.K. Darbha, A. Ray, P.C. Ray, ACS Nano 1, 208 (2007) CrossRefGoogle Scholar
  2. 2.
    C.A. Mirkin, R.L. Letsinger, R.C. Mucic, J.J. Storhoff, Nature 382, 607 (1996) CrossRefADSGoogle Scholar
  3. 3.
    M.L. Brongersma, J.W. Hartman, H.A. Atwater, Phys. Rev. B 62, 16356 (2000) CrossRefADSGoogle Scholar
  4. 4.
    M. Quinten, A. Leitner, J.R. Krenn, F.R. Aussenegg, Opt. Lett. 23, 1331 (1998) CrossRefADSGoogle Scholar
  5. 5.
    L.N. Lewis, Chem. Rev. 93, 2693 (1993) CrossRefGoogle Scholar
  6. 6.
    R. Ferrando, J. Jellinek, R.L. Johnston, Chem. Rev. 108, 845 (2008) CrossRefGoogle Scholar
  7. 7.
    J. Jellinek, Faraday Discuss. 138, 11 (2008) CrossRefADSGoogle Scholar
  8. 8.
    F. Chen, R.L. Johnston, Acta Mater. 56, 2374 (2008) CrossRefGoogle Scholar
  9. 9.
    F.Y. Chen, R.L. Johnston, Appl. Phys. Lett. 90, 153123 (2007) CrossRefADSGoogle Scholar
  10. 10.
    S. Núñez, R.L. Johnston, J. Phys. Chem. C 114, 13255 (2010) CrossRefGoogle Scholar
  11. 11.
    Z.Y. Jiang, K.H. Lee, S.T. Li, S.Y. Chu, Phys. Rev. B 73, 235423 (2006) CrossRefADSGoogle Scholar
  12. 12.
    D.A. Kilimis, D.G. Papageorgiou, Eur. Phys. J. D 56, 189 (2010) CrossRefADSGoogle Scholar
  13. 13.
    R. Ferrando, A. Fortunelli, R.L. Johnston, Phys. Chem. Chem. Phys. 10, 640 (2008) CrossRefGoogle Scholar
  14. 14.
    R. Ferrando, A. Fortunelli, G. Rossi, Phys. Rev. B 72, 085449 (2005) CrossRefADSGoogle Scholar
  15. 15.
    A. Rapallo, G. Rossi, R. Ferrando, A. Fortunelli, B.C. Curley, L.D. Lloyd, G.M. Tarbuck, R.L. Johnston, J. Chem. Phys. 122, 194308 (2005) CrossRefADSGoogle Scholar
  16. 16.
    G. Rossi, A. Rapallo, C. Mottet, A. Fortunelli, F. Baletto, R. Ferrando, Phys. Rev. Lett. 93, 105503 (2004) CrossRefADSGoogle Scholar
  17. 17.
    G. Barcaro, A. Fortunelli, G. Rossi, F. Nita, R. Ferrando, J. Phys. Chem. B 110, 23197 (2006) CrossRefGoogle Scholar
  18. 18.
    M. Molayem, V.G. Grigoryan, M. Springborg, J. Phys. Chem. C 115, 22148 (2011) CrossRefGoogle Scholar
  19. 19.
    H. Yildirim, A. Kara, T.S. Rahman, J. Phys. Chem. C 116, 281 (2012) CrossRefGoogle Scholar
  20. 20.
    D. Bochicchio, R. Ferrando, Nano Lett. 10, 4211 (2010) CrossRefADSGoogle Scholar
  21. 21.
    D. Bochicchio, R. Ferrando, Eur. Phys. J. D 66, 115 (2012) CrossRefADSGoogle Scholar
  22. 22.
    H.C. Weissker, C. Mottet, Phys. Rev. B 84, 165443 (2011) CrossRefADSGoogle Scholar
  23. 23.
    B. Delley, J. Chem. Phys. 92, 508 (1990) CrossRefADSGoogle Scholar
  24. 24.
    B. Delley, J. Chem. Phys. 113, 7756 (2000) CrossRefADSGoogle Scholar
  25. 25.
    K. Shin, D.H. Kim, S.C. Yeo, H.M. Lee, Catal. Today 185, 94 (2012) CrossRefGoogle Scholar
  26. 26.
    C.J. Heard, R.L. Johnston, Eur. Phys. J. D 67, 34 (2013) CrossRefADSGoogle Scholar
  27. 27.
    W.Q. Ma, F.Y. Chen, J. Alloys Compd. 541, 79 (2012) CrossRefGoogle Scholar
  28. 28.
    Y. Rao, Y.M. Lei, X.Y. Cui, Z.W. Liu, F.Y. Chen, J. Alloys Compd. 55, 50 (2013) CrossRefGoogle Scholar
  29. 29.
    W. Li, F. Chen, Comput. Mater. Sci. 81, 587 (2014) CrossRefGoogle Scholar
  30. 30.
    W.Y. Li, F.Y. Chen, J. Nanopart. Res. 15, 1809 (2013) CrossRefzbMATHGoogle Scholar
  31. 31.
    W. Li, F. Chen, Appl. Phys. A 113, 543 (2013) CrossRefADSGoogle Scholar
  32. 32.
    G.A. Bishea, N. Marak, M.D. Morse, J. Chem. Phys. 95, 5618 (1991) CrossRefADSGoogle Scholar
  33. 33.
    G.A. Bishea, C.A. Arrington, J.M. Behm, M.D. Morse, J. Chem. Phys. 95, 8765 (1991) CrossRefADSGoogle Scholar
  34. 34.
    M.A. Cheeseman, J.R. Eyler, J. Phys. Chem. 96, 1082 (1992) CrossRefGoogle Scholar
  35. 35.
    M. Cazayous, C. Langlois, T. Oikawa, C. Ricolleau, A. Sacuto, Phys. Rev. B 73 (2006) Google Scholar
  36. 36.
    C. Langlois, D. Alloyeau, Y. Le Bouar, A. Loiseau, T. Oikawa, C. Mottet, C. Ricolleau, Faraday Discuss. 138, 375 (2008) CrossRefADSGoogle Scholar
  37. 37.
    C. Langlois, Z.L. Li, J. Yuan, D. Alloyeau, J. Nelayah, D. Bochicchio, R. Ferrando, C. Ricolleau, Nanoscale 4, 3381 (2012) CrossRefADSGoogle Scholar
  38. 38.
    M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga, Y. Sano, CrystEngComm 12, 3900 (2010) CrossRefGoogle Scholar
  39. 39.
    B. Delley, Phys. Rev. B 66, 155125 (2002) CrossRefADSGoogle Scholar
  40. 40.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) CrossRefADSGoogle Scholar
  41. 41.
    B. Delley, J. Phys.: Condens. Matter 22, 384208 (2010) ADSGoogle Scholar
  42. 42.
    P.S. Bechthold, U. Kettler, W. Krasser, Surf. Sci. 156, 875 (1985) CrossRefADSGoogle Scholar
  43. 43.
    S. Fedrigo, W. Harbich, J. Buttet, Phys. Rev. B 47, 10706 (1993) CrossRefADSGoogle Scholar
  44. 44.
    J.C. Idrobo, S. Ogut, J. Jellinek, Phys. Rev. B 72, 085445 (2005) CrossRefADSGoogle Scholar
  45. 45.
    S. Öğüt, J.C. Idrobo, J. Jellinek, J. Wang, J. Cluster Sci. 17, 609 (2006) CrossRefGoogle Scholar
  46. 46.
    M.L. Tiago, J.C. Idrobo, S. Ogut, J. Jellinek, J.R. Chelikowsky, Phys. Rev. B 79, 155419 (2009) CrossRefADSGoogle Scholar
  47. 47.
    K. Yabana, G.F. Bertsch, Phys. Rev. A 60, 3809 (1999) CrossRefADSGoogle Scholar
  48. 48.
    J. Yan, S.W. Gao, Phys. Rev. B 78, 235413 (2008) CrossRefADSGoogle Scholar
  49. 49.
    V. Bonačicì-Koutecky, V. Veyret, R. Mitricì, J. Chem. Phys. 115, 10450 (2001) CrossRefADSGoogle Scholar
  50. 50.
    R. Poteau, J.-L. Heully, F. Spiegelmann, Z. Phys. D 40, 479 (1997) CrossRefADSGoogle Scholar
  51. 51.
    C. Jackschath, I. Rabin, W. Schulze, Z. Phys. D 22, 517 (1992) CrossRefADSGoogle Scholar
  52. 52.
    G. Alameddin, J. Hunter, D. Cameron, M.M. Kappes, Chem. Phys. Lett. 192, 122 (1992) CrossRefADSGoogle Scholar
  53. 53.
    V. Bonačicì-Kouteckyì, L. Češpiva, P. Fantucci, J. Kouteckyì, J. Chem. Phys. 98, 7981 (1993) CrossRefADSGoogle Scholar
  54. 54.
    D. Tian, H. Zhang, J. Zhao, Solid State Commun. 144, 174 (2007) CrossRefADSGoogle Scholar
  55. 55.
    M. Tiago, J. Idrobo, S. Öğüt, J. Jellinek, J. Chelikowsky, Phys. Rev. B 79, 155419 (2009) CrossRefADSGoogle Scholar
  56. 56.
    R. Fournier, J. Chem. Phys. 115, 2165 (2001) CrossRefADSGoogle Scholar
  57. 57.
    V.A. Spasov, T.-H. Lee, K.M. Ervin, J. Chem. Phys. 112, 1713 (2000) CrossRefADSGoogle Scholar
  58. 58.
    S. Li, M.M. Alemany, J.R. Chelikowsky, J. Chem. Phys. 125, 34311 (2006) CrossRefGoogle Scholar
  59. 59.
    M. Yang, K.A. Jackson, J. Chem. Phys. 122, 184317 (2005) CrossRefADSGoogle Scholar
  60. 60.
    S. Gautam, K. Dharamvir, N. Goel, Comput. Theor. Chem. 1009, 8 (2013) CrossRefGoogle Scholar
  61. 61.
    M.B. Knickelbein, Chem. Phys. Lett. 192, 129 (1992) CrossRefADSGoogle Scholar
  62. 62.
    K. Jug, B. Zimmermann, P. Calaminici, A.M. Köster, J. Chem. Phys. 116, 4497 (2002) CrossRefADSGoogle Scholar
  63. 63.
    G. Guzmán-Ramírez, F. Aguilera-Granja, J. Robles, Eur. Phys. J. D 57, 335 (2010) CrossRefADSGoogle Scholar
  64. 64.
    P. Jaque, A. Toro-Labbeì, J. Chem. Phys. 117, 3208 (2002) CrossRefADSGoogle Scholar
  65. 65.
    S. Lecoultre, A. Rydlo, J. Buttet, C. Felix, S. Gilb, W. Harbich, J. Chem. Phys. 134, 184504 (2011) CrossRefADSGoogle Scholar
  66. 66.
    M. Harb, F. Rabilloud, D. Simon, A. Rydlo, S. Lecoultre, F. Conus, V. Rodrigues, C. Felix, J. Chem. Phys. 129, 194108 (2008) CrossRefADSGoogle Scholar
  67. 67.
    W. Harbich, S. Fedrigo, J. Buttet, Z. Phys. D 26, 138 (1993) CrossRefADSGoogle Scholar
  68. 68.
    S. Lecoultre, A. Rydlo, C. Felix, J. Buttet, S. Gilb, W. Harbich, J. Chem. Phys. 134, 074303 (2011) CrossRefADSGoogle Scholar
  69. 69.
    G.A. Ozin, D.F. McIntosh, J. Phys. Chem. 90, 5756 (1986) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.State Key Laboratory of Solidification Processing, Northwestern Polytechnical UniversityXianP.R. China

Personalised recommendations