Entanglement production in scattering of Gaussian wave packets from fixed localized impurities

  • Ebrahim Ghanbari-Adivi
  • Morteza Soltani
  • Halimeh Ebtekarnasab
Regular Article

Abstract

Generation of quantum entanglement in scattering of particles from fixed localized spin impurities is investigated. In the suggested approach, the incident particle is described by a Gaussian wave packet with an initial definite width. It is also assumed that the incident particle interacts with the impurities through the Ising and/or Heisenberg interactions. It is shown that the created entanglement is strongly affected by the initial width of the incident wave packet. For an initially well localized wave packet the created entanglement is low. However, as the initial width increases the entanglement grows appreciably and for sufficiently large values of the initial width the present results tend to our previous results for scattering of plane waves from spin impurities. For scattering from a double spin impurity, it is shown that the periodic behavior of the previous results changes significantly.

Keywords

Quantum Information 

References

  1. 1.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSCrossRefMATHGoogle Scholar
  2. 2.
    M.A. Nielsen, I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000)Google Scholar
  3. 3.
    D. Bouwmeester, A. Ekert, A. Zeilinger, The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, Oxford, 2000)Google Scholar
  4. 4.
    S.M. Barnett, Quantum Information (Oxford University Press, Oxford, 2009)Google Scholar
  5. 5.
    C.H. Bennett, D.P. DiVincenzo, Nature 404, 247 (2002) ADSCrossRefGoogle Scholar
  6. 6.
    J. Audretsch, Entangled Systems (Wiley-VCH, Weinheim, 2007)Google Scholar
  7. 7.
    V. Vedral, Introduction to Quantum Information Science (Oxford University Press, New York, 2006)Google Scholar
  8. 8.
    F. Kheirandish, S.J. Akhtarshenas, H. Mohammadi, Phys. Rev. A 77, 042309 (2008) ADSCrossRefGoogle Scholar
  9. 9.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Josza, A. Peres, W.K. Wooters, Phys. Rev. A 60, 1888 (1999) CrossRefMathSciNetGoogle Scholar
  10. 10.
    L. Memarzadeh, S. Mancini, Phys. Rev. A 86, 062316 (2012) ADSCrossRefGoogle Scholar
  11. 11.
    L. Memarzadeh, S. Mancini, Phys. Rev. A 87, 032303 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    S. Pegahan, M. Soltani, F. Kheirandish, Int. J. Theor. Phys. 52, 4403 (2013) CrossRefMATHGoogle Scholar
  13. 13.
    R. Dicke, Phys. Rev. 93, 99 (1954)ADSCrossRefMATHGoogle Scholar
  14. 14.
    R. Tanas, Z. Ficek, J. Opt. B 6, S610 (2004)ADSCrossRefGoogle Scholar
  15. 15.
    P. Domokos, J.M. Raimond, M. Brune, S. Haroche, Phys. Rev. A 52, 3554 (1995) ADSCrossRefGoogle Scholar
  16. 16.
    A. Bayat, S. Bose, Phys. Rev. A 81, 012304 (2010) ADSCrossRefGoogle Scholar
  17. 17.
    A. Bayat, S. Bose, Adv. Math. Phys. 2010, 127182 (2010) CrossRefMathSciNetGoogle Scholar
  18. 18.
    M.C. Arnesen, S. Bose, V. Vedral, Phys. Rev. Lett. 87, 017901 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    M. Rafiee, M. Soltani, H. Mohammadi, H. Mokhtari, Eur. Phys. J. D 63, 473 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    K. Mishima, M. Hayashi, S.H. Lin, Phys. Lett. A 333, 371 (2004) ADSCrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    D. Yang, S. Gu, H. Li, J. Phys. A 40, 14871 (2007) ADSCrossRefMATHMathSciNetGoogle Scholar
  22. 22.
    K. Yuasa, H. Nakazato, J. Phys. A 40, 297 (2007)ADSCrossRefMATHMathSciNetGoogle Scholar
  23. 23.
    G. Cordourier-Maruri, F. Ciccarello, Y. Omar, M. Zarcone, R. de Coss, S. Bose, Phys. Rev. A 82, 052313 (2010) ADSCrossRefGoogle Scholar
  24. 24.
    R. Weder, Phys. Rev. A 84, 062320 (2011) ADSCrossRefGoogle Scholar
  25. 25.
    D. Home, A.S. Majumdar, A. Matzkin, J. Phys. A 45, 295301 (2012) CrossRefGoogle Scholar
  26. 26.
    M.G. Benedict, J. Kovacs, A. Czirjak, J. Phys. A 45, 085304 (2012) ADSCrossRefMathSciNetGoogle Scholar
  27. 27.
    N.L. Harshman, P. Singh, J. Phys. A 41, 155304 (2008) ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    N.L. Harshman, G. Hutton, Phys. Rev. A 77, 042310 (2008) ADSCrossRefGoogle Scholar
  29. 29.
    K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 68, 022110 (2003) ADSCrossRefGoogle Scholar
  30. 30.
    M.V. Fedorov, M.A. Efremov, A.E. Kazakov, K.W. Chan, C.K. Law, J.H. Eberly, Phys. Rev. A 69, 052117 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    J. Wang, C.K. Law, M.C. Chu, Phys. Rev. A 73, 034302 (2006) ADSCrossRefGoogle Scholar
  32. 32.
    J.Q. Liao, C.K. Law, Phys. Rev. A 78, 043809 (2013) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Hida, H. Nakazato, K. Yuasa, Y. Omar, Phys. Rev. A 80, 012310 (2009) ADSCrossRefMathSciNetGoogle Scholar
  34. 34.
    E. Ghanbari-Adivi, M. Soltani, H. Ebtekarnasab, Eur. Phys. J. D 67, 118 (2013)ADSCrossRefGoogle Scholar
  35. 35.
    C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics (Wiley-VCH, 1992)Google Scholar
  36. 36.
    M.A. Andreata, V.V. Dodonov, J. Phys. A 37, 2423 (2004) ADSCrossRefMATHMathSciNetGoogle Scholar
  37. 37.
    T. Cox, J. Lekner, Eur. J. Phys. 29, 671 (2008)CrossRefMATHGoogle Scholar
  38. 38.
    A. Peres, Phys. Rev. Lett. 77, 1413 (1996) ADSCrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    M. Horodecki, P. Horodecki, R. Horodecki, Phys. Lett. A 223, 1 (1996)ADSCrossRefMATHMathSciNetGoogle Scholar
  40. 40.
    R. Horodecki, P. Horodecki, M. Horodecki, K. Horodecki, Rev. Mod. Phys. 81, 865 (2009)ADSCrossRefMATHMathSciNetGoogle Scholar
  41. 41.
    M. Schlosshauer, Decoherence and the quantum-to-classical transition (Springer-Verlag, Berlin, 2007)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ebrahim Ghanbari-Adivi
    • 1
  • Morteza Soltani
    • 1
  • Halimeh Ebtekarnasab
    • 1
  1. 1.Department of Physics and Isfahan Quantum Optics Group (IQOG), Faculty of ScienceUniversity of IsfahanIsfahanIran

Personalised recommendations