Advertisement

Study of the positronium thermalization in porous materials

  • Omar MorandiEmail author
  • Paul-Antoine Hervieux
  • Giovanni Manfredi
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

We simulate the thermalization process of a high energetic positronium gas trapped in a silica pore. The gas dynamics is reproduced by using a kinetic approach. Our approach includes the two-body scattering interaction and the exchange of energy between the atoms and the internal surface of the pore cavity. We discuss the formation of a quasi-equilibrium state induced by the fast internal thermalization of the gas and the evolution of the gas temperature. We estimate the time necessary to achieve the total thermalization of the gas. The reliability of our model is verified by comparing the numerical results with some experimental data.

Keywords

Pore Surface Porous Silica Thermalization Time Injection Energy Positronium Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.P. Mills, Nucl. Instrum. Methods Phys. Res. B 192, 415 (2002) ADSCrossRefGoogle Scholar
  2. 2.
    P.M. Platzman, A.P. Mills, Phys. Rev. B 49, 454 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    D.B. Cassidy, A.P. Mills, Nature 449, 195 (2007) ADSCrossRefGoogle Scholar
  4. 4.
    D.B. Cassidy, S.H.M. Deng, R.G. Greaves, T. Maruo, N. Nishiyama, J.B. Snyder, H.K.M. Tanaka, A.P. Mills, Phys. Rev. Lett. 95, 195006 (2005) ADSCrossRefGoogle Scholar
  5. 5.
    L. Liszkay, C. Corbel, L. Raboin, J.-P. Boilot, P. Perez, A. Brunet-Bruneau, P. Crivelli, U. Gendotti, A. Rubbia, T. Ohdaira, Appl. Phys. Lett. 95, 124103 (2009) ADSCrossRefGoogle Scholar
  6. 6.
    D.B. Cassidy, A.P. Mills, Phys. Stat. Sol. C 4, 3419 (2007) CrossRefGoogle Scholar
  7. 7.
    D.B. Cassidy, V.E. Meligne, A.P. Mills, Phys. Rev. Lett. 104, 173401 (2010) ADSCrossRefGoogle Scholar
  8. 8.
    R.F. Kiefl, D.R. Harshman, Phys. Lett. A 98, 447 (1983) ADSCrossRefGoogle Scholar
  9. 9.
    T.B. Chang, M. Xu, X. Zeng, Phys. Lett. A 126, 189 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    S. Takada, T. Iwata, K. Kawashima, H. Saito, Y. Nagashima, T. Hyodo, Radiat. Phys. Chem. 58, 781 (2000) ADSCrossRefGoogle Scholar
  11. 11.
    D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    C.J. Brinker, G.W. Scherer, The Physics and Chemistry of Sol-Gel Processing (Academic Press, New York, 1990) Google Scholar
  13. 13.
    Y. Nagashima, M. Kakimoto, T. Hyodo, K. Fujiwara, A. Ichimura, T. Chang, J. Deng, T. Akahane, T. Chiba, K. Suzuki, B.T.A. McKee, A.T. Stewart, Phys. Rev. A 52, 258 (1995) ADSCrossRefGoogle Scholar
  14. 14.
    Y. Nagashima, T. Hyodo, K. Fujiwara, A. Ichimura, J. Phys. B 31, 329 (1998) ADSCrossRefGoogle Scholar
  15. 15.
    L. Banyai, P. Gartner, O.M. Schmitt, H. Haug, Phys. Rev. B 61, 8823 (2000) ADSCrossRefGoogle Scholar
  16. 16.
    F. Tassone, Y. Yamamoto, Phys. Rev. B 59, 10830 (1999) ADSCrossRefGoogle Scholar
  17. 17.
    O. Morandi, P.-A. Hervieux, G. Manfredi, Phys. Rev. A 88, 023618 (2013) ADSCrossRefGoogle Scholar
  18. 18.
    O. Kenji, T. Miyakama, H. Yabu, T. Suzuki, J. Phys. Soc. Jpn 70, 1549 (2001) ADSCrossRefGoogle Scholar
  19. 19.
    I.A. Ivanov, J. Mitroy, K. Varga, Phys. Rev. A 65, 022704 (2002) ADSCrossRefGoogle Scholar
  20. 20.
    S. Chapman, T.G. Cowling, The Mathematical Theory of Non-uniform Gases (Cambridge University Press, 1990) Google Scholar
  21. 21.
    M.L. Goldberger, K.M. Watson, Collision Theory (Wiley, New York, 1964) Google Scholar
  22. 22.
    M. Galler, F. Schürrer, J. Phys. A: Math. Gen. 37, 1479 (2004) ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    S. Mariazzi, A. Salemi, R.S. Brusa, Phys. Rev. B 78, 085428 (2008) ADSCrossRefGoogle Scholar
  24. 24.
    D.B. Cassidy, J.A. Golovchenko, in New Directions in Antimatter Chemistry and Physics, edited by C.M. Surko, F. Gianturco (Kluwer Academic Publishers, New York, 2001), p. 83 Google Scholar
  25. 25.
    P. Lichtenberger, O. Morandi, F. Schürrer, Phys. Rev. B 84, 045406 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    O. Morandi, F. Schuerrer, J. Phys. A: Math. Theor. 44, 265301 (2011) ADSCrossRefGoogle Scholar
  27. 27.
    O. Morandi, Phys. Rev. B 80, 024301 (2009) ADSCrossRefGoogle Scholar
  28. 28.
    A.L. Fetter, J. Low Temp. Phys. 129, 263 (2002) ADSCrossRefGoogle Scholar
  29. 29.
    C.W. Gardiner, M.D. Lee, R.J. Ballagh, M.J. Davis, P. Zoller, Phys. Rev. Lett. 81, 5266 (1998) ADSCrossRefGoogle Scholar
  30. 30.
    Huy Thien Cao, T.D. Doan, D.B. Tran Thoai, H. Haug, Phys. Rev. B 69, 245325 (2004) ADSCrossRefGoogle Scholar
  31. 31.
    H. Saito, T. Hyodo, in New Directions in Antimatter Chemistry and Physics, edited by C.M. Surko, F. Gianturco (Kluwer Academic Publishers, New York, 2001), p. 101 Google Scholar
  32. 32.
    S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Omar Morandi
    • 1
    Email author
  • Paul-Antoine Hervieux
    • 1
  • Giovanni Manfredi
    • 1
  1. 1.Institut de Physique et Chimie des Matériaux de Strasbourg and Labex NIE, Université de Strasbourg, CNRS UMR 7504StrasbourgFrance

Personalised recommendations