Multi-component molecular orbital study on positron attachment to alkali-metal hydride molecules: nature of chemical bonding and dissociation limits of [LiH; e+]

  • Takayuki Oyamada
  • Masanori Tachikawa
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes


We have performed multi-component full-configuration interaction calculations to investigate the nature of chemical bonding of [LiH;e+] at the small and large internuclear distance. We discuss the importance of geometrical changes in positronic compounds induced by a positron attachment in terms of the virial theorem, with a comparison of the adiabatic- and vertical-positron affinity (PA). The systematic improvement of the PA values achieved by optimisation of (i) the molecular geometry and (ii) the positronic basis centre is also discussed. The stable dissociation channel of [LiH;e+] is compared with the ionic- and neutral-dissociation channels of its parent molecule LiH through the analysis of the potential energy curve and the electronic and positronic densities. The vertical PA as a function of is also presented, which is the difference between the potential energy curve of the parent molecule (LiH → Li + H) and its positronic compound ([LiH; e+] → Li + [H; e+]). Unlike the preceding study of [M. Mella et al., J. Chem. Phys. 113, 6154 (2000)], it took more than bohr to converge the vertical PA due to the long-range ionic bonding interaction.


Internuclear Distance Potential Energy Curve Virial Theorem Dissociation Limit Dissociation Channel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    M. Charlton, J.W. Humberston, Positron Physics (Cambridge University Press, Cambridge, 2001)Google Scholar
  2. 2.
    J.R. Danielson, J.J. Gosselin, C.M. Surko, Phys. Rev. Lett. 104, 233201 (2010)CrossRefADSGoogle Scholar
  3. 3.
    J.R. Danielson, A.C.L. Jones, M.R. Natisin, C.M. Surko, Phys. Rev. Lett. 109, 113201 (2012)CrossRefADSGoogle Scholar
  4. 4.
    O.H. Crawford, Proc. Phys. Soc. 91, 279 (1967)CrossRefADSGoogle Scholar
  5. 5.
    O.H. Crawford, Mol. Phys. 20, 585 (1971)CrossRefADSGoogle Scholar
  6. 6.
    P.E. Cade, W.M. Huo, J. Chem. Phys. 45, 1063 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    P.E. Cade, W.M. Huo, J. Chem. Phys. 47, 614 (1967)ADSCrossRefGoogle Scholar
  8. 8.
    R.J. Buenker, H.P. Liebermann, V. Melnikov, M. Tachikawa, L. Pichl, M. Kimura, J. Phys. Chem. A 109, 5956 (2005)CrossRefGoogle Scholar
  9. 9.
    H.A. Kurtz, K.D. Jordan, J. Phys. B 11, L479 (1978)CrossRefADSGoogle Scholar
  10. 10.
    K. Strasburger, J. Chem. Phys. 111, 10555 (1999)ADSCrossRefGoogle Scholar
  11. 11.
    K. Strasburger, J. Chem. Phys. 114, 615 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S. Bubin, L. Adamowicz, J. Chem. Phys. 120, 6051 (2004)ADSCrossRefGoogle Scholar
  13. 13.
    M. Mella, G. Morosi, D. Bressanini, S. Elli, J. Chem. Phys. 113, 6154 (2000)ADSCrossRefGoogle Scholar
  14. 14.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 131, 134310 (2009)ADSCrossRefGoogle Scholar
  15. 15.
    Y. Kita, R. Maezono, M. Tachikawa, M. Towler, R.J. Needs, J. Chem. Phys. 135, 054108 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    C. Swalina, M.V. Pak, S. Hammes-Schiffer, J. Chem. Phys. 136, 164105 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    J. Mitroy, G.G. Rhyzhikh, J. Phys. B 33, L479 (2000)Google Scholar
  18. 18.
    Y. Yamada, Y. Kita, M. Tachikawa, M.D. Towler, R.J. Needs, Eur. Phys. J. D 68, 63 (2014)CrossRefADSGoogle Scholar
  19. 19.
    M. Tachikawa, K. Taneda, K. Mori, Int. J. Quant. Chem. 75, 497 (1999)CrossRefGoogle Scholar
  20. 20.
    M. Tachikawa, Chem. Phys. Lett. 350, 269 (2001)ADSCrossRefGoogle Scholar
  21. 21.
    M. Tachikawa, Y. Kita, R.J. Buenker, Phys. Chem. Chem. Phys. 13, 2701 (2011)CrossRefGoogle Scholar
  22. 22.
    G. Marc, W.G. McMillan, in Advances in Chemical Physics, edited by I. Prigogine, S.A. Rice (Wiley, New York, 1985), Vol. 58, pp. 209–361Google Scholar
  23. 23.
    M. Tachikawa, Y. Osamura, J. Chem. Phys. 113, 4942 (2000)ADSCrossRefGoogle Scholar
  24. 24.
    Y. Yamaguchi, Y. Osamura, J.D. Goddard, H.F. Schaefer III, A New Dimension to Quantum Chemistry: Analytic Derivative Methods in Ab Initio Molecular Electronic Structure Theory (Oxford University Press, New York, 1994), and references thereinGoogle Scholar
  25. 25.
    K. Strasburger, Chem. Phys. Lett. 253, 49 (1996)ADSCrossRefGoogle Scholar
  26. 26.
    B.C. Webster, Chemical Bonding Theory (Blackwell Scientific, Oxford, 1990)Google Scholar
  27. 27.
    H. Partridge, S.R. Langhoff, J. Chem. Phys. 74, 2361 (1981)ADSCrossRefGoogle Scholar
  28. 28.
    J. Mitroy, G.G. Rhyzhikh, J. Phys. B 34, 2001 (2001)CrossRefADSGoogle Scholar
  29. 29.
    M. Tachikawa, Y. Kita, Butsuri 67, 33 (2012) (in Japanese)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Quantum Chemistry Division, Graduate School of NanobioscienceYokohama City UniversityYokohamaJapan

Personalised recommendations