Advertisement

Conservation laws and solitons for a generalized inhomogeneous fifth-order nonlinear Schrödinger equation from the inhomogeneous Heisenberg ferromagnetic spin system

  • Pan WangEmail author
Regular Article

Abstract

In this paper, we investigate a generalized inhomogeneous fifth-order nonlinear Schrödinger equation, generated by deforming the inhomogeneous Heisenberg ferromagnetic spin system through the space curve formalism. Based on the Ablowitz-Kaup-Newell-Segur system, infinitely many conservation laws will be obtained. Via the introduction of the auxiliary functions, bilinear form and N-soliton solutions have been derived with symbolic computation. Propagation and interaction of solitons have been studied through the analytical results. Effects of the inhomogeneous functions f = μ 1 x + ν 1 and h = μ 2 x + ν 2 on the soliton velocity and interactions have been discussed graphically and analytically.

Keywords

Nonlinear Dynamics 

References

  1. 1.
    R. Radha, V.R. Kumar, Z. Naturforsch. A 62, 381 (2007)zbMATHGoogle Scholar
  2. 2.
    H.D. Wahlquist, F.B. Estabrook, J. Math. Phys. 16, 1 (1975)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    F.B. Estabrook, H.D. Wahlquist, J. Math. Phys. 17, 1293 (1976)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    R. Hermann, Phys. Rev. Lett. 36, 835 (1976)ADSCrossRefMathSciNetGoogle Scholar
  5. 5.
    R.K. Dodd, J.D. Gibbon, Proc. Roy. Soc. Lond. A 358, 287 (1978)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    G.L. Lamb, Jr., Phys. Rev. Lett. 37, 235 (1976)ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    G.L. Lamb, Jr., J. Math. Phys. 18, 1654 (1977)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    M. Lakshmanan, Phys. Lett. A 64, 353 (1978)ADSCrossRefGoogle Scholar
  9. 9.
    M. Lakshmanan, J. Math. Phys. 20, 1667 (1979)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    W.Z. Zhao, Y.Q. Bai, K. Wu, Phys. Lett. A 352, 64 (2006)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    L. Kavitha, M. Daniel, J. Phys. A 36, 10471 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    J.F. Zhang, Q. Yang, C.Q. Dai, Opt. Commun. 248, 257 (2005)ADSCrossRefGoogle Scholar
  13. 13.
    V.I. Kruglov, A.C. Peacock, J.D. Harvey, Phys. Rev. Lett. 90, 113902 (2003)ADSCrossRefGoogle Scholar
  14. 14.
    F. Calogero, A. Degasperis, Commun. Math. Phys. 63, 155 (1978)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    M. Lakshmanan, Phys. Lett. A 61, 53 (1977)ADSCrossRefGoogle Scholar
  16. 16.
    K. Porsezian, M. Daniel, R. Bharathikannan, Phys. Lett. A 156, 206 (1991)ADSCrossRefMathSciNetGoogle Scholar
  17. 17.
    B. Tian, W.R. Shan, C.Y. Zhang, G.M. Wei, Y.T. Gao, Eur. Phys. J. B 47, 329 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    M. Daniel, M.M. Latha, Physica A 298, 351 (2001)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    M. Lakshmanan, R.K. Bullough, Phys. Lett. A 80, 287 (1980)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    M. Daniel, M.D. Kruskal, M. Lakshmanan, K. Nakamura, J. Math. Phys. 33, 771 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    M. Daniel, L. Kavitha, Phys. Rev. B 66, 184433 (2002)ADSCrossRefGoogle Scholar
  22. 22.
    M. Lakshmanan, K. Porsezian, M. Daniel, Phys. Lett. A 133, 483 (1998)ADSCrossRefGoogle Scholar
  23. 23.
    K. Porsezian, M. Daniel, M. Lakshmanan, J. Math. Phys. 33, 1807 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    F. Abdulleav, Theory of soliton in inhomogeneous media (John Wiley and Sons, New York, 1984)Google Scholar
  25. 25.
    G.P. Agrawal, Nonlinear fiber optics (Academic, New York, 1995)Google Scholar
  26. 26.
    H.H. Chen, C.S. Liu, Phys. Fluids 21, 377 (1978)ADSCrossRefzbMATHGoogle Scholar
  27. 27.
    K. Porsezian, Pramana 48, 143 (1997)ADSCrossRefGoogle Scholar
  28. 28.
    L. Kavitha, B. Srividya, D. Gopi, J. Magn. Magn. Mater. 322, 1793 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    L. Kavitha, P. Sathishkumar, D. Gopi, J. Phys. A 43, 125201 (2010)ADSCrossRefMathSciNetGoogle Scholar
  30. 30.
    M. Daniel, K. Porsezian, M. Lakshmanan, J. Math. Phys. 35, 6498 (1994)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  31. 31.
    R.L. Weaver, Y.H. Pao, J. Math. Phys. 22, 1909 (1981)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  32. 32.
    M. Wadati, K. Konno, Y. Ichikawa, J. Phys. Soc. Jpn 46, 1965 (1979)ADSCrossRefMathSciNetGoogle Scholar
  33. 33.
    B. Davies, Physica A 167, 433 (1990)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    P. Lax, B. Wendroff, Pure. Appl. Math. 13, 217 (1960)CrossRefzbMATHMathSciNetGoogle Scholar
  35. 35.
    R. Hirota, Phys. Rev. Lett. 27, 1192 (1971)ADSCrossRefzbMATHGoogle Scholar
  36. 36.
    M. Junta, S. Junkichi, S. Walter, Phys. Lett. A 147, 467 (1990)CrossRefMathSciNetGoogle Scholar
  37. 37.
    E. Yomba, Phys. Lett. A 372, 1048 (2008)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  38. 38.
    X. Lü, B. Tian, F.H. Qi, Nonlin. Anal. 13, 1130 (2012)CrossRefzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of ManagementBeijing Sport UniversityBeijingP.R. China

Personalised recommendations