Simulation studies of the behavior of positrons in a microtrap with long aspect ratio

Regular Article

Abstract

The storage capacity of positrons in micro-Penning-Malmberg traps with large length to radius aspect ratios and radii of tens of microns was explored. Simulation studies were conducted with the WARP code and Charged Particle Optics program. A new design of the Penning-Malmberg trap consisting of an array of microtraps with substantially lower end electrode potential than conventional traps was considered. Simulations demonstrated each microtrap with 50 μm radius immersed in a 7T uniform magnetic field could store positrons indefinitely with a density of 1.6 × 1011cm-3 while the confinement voltage was only 10V. For microtraps with radii between 100 μm and 3 μm, the particle density scaled as r-2. Charge clouds developed the expected radial density distribution (that of a soft edge) and rigid rotation evolved to some extent. Plasma confinement time was independent of trap length.

Keywords

Plasma Physics 

References

  1. 1.
    D.B. Cassidy, A.P. Mills, Nature 449, 195 (2007) ADSCrossRefGoogle Scholar
  2. 2.
    R.G. Greaves, C.M. Surko, AIP Conf. Proc. 606, 10 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    M. Amoretti, C. Amsler, G. Bonomi, A. Bouchta, P. Bowe, C. Carraro, C.L. Cesar, M. Charlton, M.J.T. Collier, M. Doser, V. Filippini, K.S. Fine, A. Fontana, M.C. Fujiwara, R. Funakoshi, P. Genova, J.S. Hangst, R.S. Hayano, M.H. Holzscheiter, L.V. Jorgensen, V. Lagomarsino, R. Landua, D. Lindelof, E. Lodi Rizzini, M. Macri, N. Madsen, G. Manuzio, M. Marchesotti, P. Montagna, H. Pruys, C. Regenfus, P. Riedler, J. Rochet, A. Rotondi, G. Rouleau, G. Testera, A. Variola, T.L. Watson, D.P. van der Werf, Nature 419, 456 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    G.B. Andresen, M.D. Ashkezari, M. Baquero-Ruiz, W. Bertsche, P.D. Bowe, E. Butler, C.L. Cesar, M. Charlton, A. Deller, S. Eriksson, J. Fajans, T. Friesen, M.C. Fujiwara, D.R. Gill, A. Gutierrez, J.S. Hangst, W.N. Hardy, R.S. Hayano, M.E. Hayden, A.J. Humphries, R. Hydomako, S. Jonsell, S.L. Kemp, L. Kurchaninov, N. Madsen, S. Menary, P. Nolan, K. Olchanski, A. Olin, P. Pusa, C. Ø. Rasmussen, F. Robicheaux, E. Sarid, D.M. Silveira, C. So, J.W. Storey, R.I. Thompson, D.P. van der Werf, J.S. Wurtele, Y. Yamazaki, Nat. Phys. 7, 558 (2011) CrossRefGoogle Scholar
  5. 5.
    M.H. Holzscheiter, M. Charlton, M.M. Nieto, Phys. Rep. 402, 1 (2004) ADSCrossRefGoogle Scholar
  6. 6.
    P.J. Schultz, K.G. Lynn, Rev. Mod. Phys. 60, 701 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    R.C. Davidson, Theory of Nonneutral Plasmas (Addison- Wesley, Reading, Massachusetts, 1989) Google Scholar
  8. 8.
    F.M. Penning, Physica 3, 873 (1936) ADSCrossRefGoogle Scholar
  9. 9.
    J.H. Malmberg, C.F. Driscoll, Phys. Rev. Lett. 44, 654 (1980) ADSCrossRefGoogle Scholar
  10. 10.
    D.L. Eggleston, Phys. Plasmas 4, 1196 (1997) ADSCrossRefGoogle Scholar
  11. 11.
    K.G. Lynn, R.G. Greaves, Private communication (2001) Google Scholar
  12. 12.
    C.M. Surko, R.G. Greaves, Radiat. Phys. Chem. 68, 419 (2003) ADSCrossRefGoogle Scholar
  13. 13.
    L. Brillouin, Phys. Rev. 67, 260 (1945) ADSCrossRefGoogle Scholar
  14. 14.
    D.H.E. Dubin, T.M. O’Neil, Rev. Mod. Phys. 71, 87 (1999) ADSCrossRefGoogle Scholar
  15. 15.
    R.C. Davidson, Physics of Non-neutral Plasmas (Addison-Wesley, Redwood City, 1990) Google Scholar
  16. 16.
    E.M. Hollmann, F. Anderegg, C.F. Driscoll, Phys. Plasmas 7, 2776 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    J.R. Danielson, T.R. Weber, C.M. Surko, Phys. Plasmas 13, 123502 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 85, 1883 (2000) ADSCrossRefGoogle Scholar
  19. 19.
    G.B. Andresen et al., Nat. Phys. 7, 558 (2011) CrossRefGoogle Scholar
  20. 20.
    C.F. Driscoll, K.S. Fine, J.H. Malmberg, Phys. Fluids 29, 2015 (1986) ADSCrossRefGoogle Scholar
  21. 21.
    J.M. Kriesel, C.F. Driscoll, Phys. Rev. Lett. 85, 2510 (2000) ADSCrossRefGoogle Scholar
  22. 22.
    A. Khamehchi, C.J. Baker, M.H. Weber, K.G. Lynn, Phys. Plasmas 21, 012512 (2014) ADSCrossRefGoogle Scholar
  23. 23.
    W. Stoeffl, P. Asoka-Kumar, R. Howell, Appl. Surf. Sci. 149, 1 (1999) ADSCrossRefGoogle Scholar
  24. 24.
    M.A. Khamehchi, A. Narimannezhad, M.H. Weber, K.G. Lynn, arXiv:1410.3543 (2014) Google Scholar
  25. 25.
    T. Mortensen, A. Deller, C.A. Isaac, D.P. van der Werf, M. Charlton, J.R. Machacek, Phys. Plasmas 20, 012124 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    D.P. Grote, WARP manual (2000) Google Scholar
  27. 27.
    CPO Users Guide www.electronoptics.com
  28. 28.
    R. Courant, K. Friedrichs, H. Lewyt, IBM J. Res. Dev. 11, 215 (1967) ADSCrossRefMATHGoogle Scholar
  29. 29.
    K. Gomberoff, J. Wurtele, A. Friedman, D.P. Grote, J.-L. Vay. J. Comput. Phys. 225, 1736 (2007) ADSCrossRefMATHGoogle Scholar
  30. 30.
    C.J. Baker, J. Jennings, A. Verma, J. Xu, M.H. Weber, K.G. Lynn. Eur. Phys. J. D 66, 109 (2012) ADSCrossRefGoogle Scholar
  31. 31.
    A. Narimannezhad, C.J. Baker, M.H. Weber, J. Xu, K.G. Lynn, arXiv:1301.0030 (2013) Google Scholar
  32. 32.
    C.K. Birdsall, A.B. Langdon, Plasma Physics via Computer Simulation (Institute of Physics Publishing, Bristol, 2002) Google Scholar
  33. 33.
    S. Ichimaru, T. Tange, J. Phys. Soc. Jpn 36, 603 (1974) ADSCrossRefGoogle Scholar
  34. 34.
    C.F. Driscoll, J.H. Malmberg, K.S. Fine, Phys. Rev. Lett. 60, 1290 (1988) ADSCrossRefGoogle Scholar
  35. 35.
    A.W. Hyatt, C.F. Driscoll, J.H. Malmberg, Phys. Rev. Lett. 59, 2975 (1987) ADSCrossRefGoogle Scholar
  36. 36.
    T.M. O’Neil, C.F. Driscoll, Phys. Fluids 22, 266 (1979) ADSCrossRefMATHGoogle Scholar
  37. 37.
    T.M. O’Neil, Phys. Fluids 23, 2216 (1980) ADSCrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    R.H. Cohen, A. Friedman, M. Kireeff Covo, S.M. Lund, A.W. Molvik, Phys. Plasmas 12, 056708 (2005) ADSCrossRefGoogle Scholar
  39. 39.
    R.H. Cohen, A. Friedman, D.P. Grote, J.-L. Vay Nucl. Instrum. Methods A 557, 52 (2007) ADSCrossRefGoogle Scholar
  40. 40.
    D.H.E. Dubin, Phys. Plasmas 5, 1688 (1998) ADSCrossRefGoogle Scholar
  41. 41.
    C.F. Driscoll, J.H. Malmberg, Phys. Rev. Lett. 50, 167 (1983) ADSCrossRefGoogle Scholar
  42. 42.
    A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, in IEEE 27th International Conference on Micro Electro Mechanical Systems (MEMS), 2014, p. 453 Google Scholar
  43. 43.
    J.F. Jia, K. Inoue, Y. Hasegawa, W.S. Yang, T. Sakurai, Phys. Rev. B 58, 1193 (1998) ADSCrossRefGoogle Scholar
  44. 44.
    A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, Micro Nano Lett. 9, 630 (2014) CrossRefGoogle Scholar
  45. 45.
    J.B. Camp, T.W. Darling, R.E. Brown, J. Appl. Phys. 69, 7126 (1991) ADSCrossRefGoogle Scholar
  46. 46.
    T.R. Weber, J.R. Danielson, C.M. Surko, AIP Conf. Proc. 1114, 171 (2009) ADSCrossRefGoogle Scholar
  47. 47.
    A. Narimannezhad, J. Jennings, M.H. Weber, K.G. Lynn, arXiv:1307.2335 (2013) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Center for Materials Research, Washington State UniversityPullmanUSA

Personalised recommendations