Advertisement

Electron transport in CF3I and CF3I-N2 mixtures

  • Satoru KawaguchiEmail author
  • Kohki Satoh
  • Hidenori Itoh
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

Electron collision cross sections for CF3I are estimated using the electron swarm method. Electron drift velocity, effective ionisation coefficient, and longitudinal diffusion coefficient in CF3I are calculated using Monte Carlo method, and the calculated electron transport coefficients are compared with those measured. Calculated electron drift velocity agrees with measured data within the difference of 6% below 1600 Td, and calculated effective ionisation coefficient agrees with measured data within the difference of 10% above 460 Td. Further, those swarm parameters in CF3I–N2 mixtures are calculated, and calculated values of electron drift velocity and effective ionisation coefficient agree well with measured data in CF3I–N2 mixtures. This confirms the validity of the estimated set.

Keywords

Drift Velocity Collision Cross Section Pulse Experiment Electron Drift Velocity Sion Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    J.T. Houghton, L.G. Meira Filho, B.A. Callander, N. Harris, A. Kattenberg, K. Maskell, Climate Change 1995: The Science of Climate Change (Cambridge University Press, Cambridge, 1996)Google Scholar
  2. 2.
    S. Samukawa, Y. Ichihashi, H. Ohtake, E. Soda, S. Saito, J. Appl. Phys. 103, 053310 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    S. Samukawa, T. Mukai, J. Vac. Sci. Technol. B 18, 166 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Ohtake, H. Ishihara, T. Fuse, A. Koshiishi, S. Samukawa, J. Vac. Sci. Technol. B 21, 2142 (2003)CrossRefGoogle Scholar
  5. 5.
    F. Fracassi, R. d’Agostino, J. Vac. Sci. Technol. B 16, 1867 (1998)CrossRefGoogle Scholar
  6. 6.
    A. Misra, J. Sees, L. Hall, R.A. Levy, V.B. Zaitsev, K. Aryusook, C. Ravindranath, V. Sigal, S. Kesari, D. Rufin, Mater. Lett. 34, 415 (1998)CrossRefGoogle Scholar
  7. 7.
    T. Takeda, S. Matsuoka, A. Kumada, K. Hidaka, IEEJ Trans. Power Energy 130, 813 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    H. Toyoda, S. Matsuoka, K. Hidaka, IEEJ Trans. Fundam. Mater. 125, 409 (2005)CrossRefGoogle Scholar
  9. 9.
    H. Akashi, Y. Sakai, N. Takahashi, T. Sakai, J. Phys. D 32, 2861 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    L.G. Christophorou, J.K. Olthoff, J. Phys. Chem. Ref. Data 29, 553 (2000)ADSCrossRefGoogle Scholar
  11. 11.
    I.V. Kochetov, A.P. Nagartovich, N.P. Vagin, N.N. Yuryshev, J. Phys. D 42, 055201 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    M. Kimura, Y. Nakamura, J. Phys. D 43, 145202 (2010)ADSCrossRefGoogle Scholar
  13. 13.
    H. Tagashira, Y. Sakai, S. Sakamoto, J. Phys. D 10, 1051 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    K. Satoh, M. Hataguchi, H. Itoh, Y. Sakai, H. Tagashira, J. Phys. D 27, 1480 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    M.-W. Ruf, M. Braun, S. Marienfeld, I.I. Fabrikant, H. Hotop, J. Phys.: Conf. Ser. 88, 012013 (2007)ADSGoogle Scholar
  16. 16.
    T. Underwood-Lemons, T.J. Gergel, J.H. Moore, J. Chem. Phys. 102, 119 (1995)ADSCrossRefGoogle Scholar
  17. 17.
    C.Q. Jiao, B. Ganguly, C.A. DeJoseph Jr., A. Garscadden, Int. J. Mass Spectrom. 208, 127 (2001)ADSCrossRefGoogle Scholar
  18. 18.
    H. Cho, M.Y. Song, J.S. Yoon, M. Hoshino, H. Tanaka, J. Phys. B 43, 135205 (2010)ADSCrossRefGoogle Scholar
  19. 19.
    H.R. Skullerud, J. Phys. D 1, 1567 (1968)ADSCrossRefGoogle Scholar
  20. 20.
    Y. Ohmori, M. Shimozuma, H. Tagashira, J. Phys. D 21, 724 (1988)ADSCrossRefGoogle Scholar
  21. 21.
    R.E. Robson, Introductory transport theory for charged particles in gases (World Scientific Publishing Co. Pte. Ltd., Singapore, 2006)Google Scholar
  22. 22.
    Z.Lj. Petrovic, S. Dujko, D. Maric, G. Malovic, Z. Nikitovic, O. Sasic, J. Jovanovic, V. Stojanovic, M. Radmilovic-Radenovic, J. Phys. D 42, 194002 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    K. Kondo, H. Tagashira, J. Phys. D 23, 1175 (1990)ADSCrossRefGoogle Scholar
  24. 24.
    H. Hasegawa, H. Date, M. Shimozuma, H. Itoh, Appl. Phys. Lett. 95, 101504 (2009)ADSCrossRefGoogle Scholar
  25. 25.
    J. de Urquijo, A.M. Juarez, E. Basurto, J.L. Hernandez-Avila, J. Phys. D 40, 2205 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    K. Yoshida, T. Ohshima, Y. Ohmori, H. Ohuchi, H. Tagashira, J. Phys. D 29, 1209 (1996)ADSCrossRefGoogle Scholar
  27. 27.
    Y. Terashita, K. Satoh, H. Itoh, in Proceedings of 2013 Annual Conference of Fundamentals and Materials Society IEE, Japan, 2013, p. 423Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Division of Information & Electronic EngineeringGraduate School of Muroran Institute of TechnologyHokkaidoJapan
  2. 2.Center of Environmental Science and Disaster Mitigation for Advanced ResearchMuroran Institute of TechnologyHokkaidoJapan

Personalised recommendations