Low-energy electron collisions with the alanine molecule

Abstract

A theoretical study on elastic electron collisions with two conformers of amino acid alanine (CH3CH(NH2)COOH) is reported. Differential and integral cross sections are computed for collision energies in the 1–10 eV range. The UK molecular R-matrix codes are used to compute scattering amplitudes within the static exchange plus polarization (SEP) approximation. Both alanine conformers have large permanent dipole moment so to calculate cross sections the Born closure procedure is included to take into account long-range interactions. Comparisons of calculated differential cross sections with available data for glycine are made and display certain similarities. Two shape resonances are detected for each conformer: a narrow one located at 2.7 eV and 3.5 eV which is probably associated with the unoccupied π orbital of the carboxyl group, and a broader resonance at 8.6 eV and 9.8 eV.

References

  1. 1.

    B. Boudaïffa, P. Cloutier, D. Hunting, M.A. Huels, L. Sanche, Science 287, 1658 (2000)

    ADS  Article  Google Scholar 

  2. 2.

    C. von Sonntag, The Chemical basis for radiation biology (Taylor and Francis, London, 1987)

  3. 3.

    I. Baccarelli, I. Bald, F.A. Gianturco, E. Illenberger, J. Kopyra, Phys. Rep. 508, 1 (2011)

    ADS  Article  Google Scholar 

  4. 4.

    L. Sanche, Eur. Phys. J. D 35, 367 (2005)

    ADS  Article  Google Scholar 

  5. 5.

    S. Tonzani, C.H. Greene, J. Chem. Phys. 125, 094504 (2006)

    ADS  Article  Google Scholar 

  6. 6.

    F. Blanco, G. García, Phys. Lett. A 360, 707 (2007)

    ADS  Article  Google Scholar 

  7. 7.

    P. Cloutier, C. Sicard-Roselli, E. Escher, L. Sanche, J. Phys. Chem. B 111, 1620 (2007)

    Article  Google Scholar 

  8. 8.

    T. Solomun, T. Skalicky, Chem. Phys. Lett. 453, 101 (2008)

    ADS  Article  Google Scholar 

  9. 9.

    L. Zhang, Z. Tan, Radiat. Environ. Biophys. 49, 15 (2010)

    Article  MATH  Google Scholar 

  10. 10.

    C. Panosetti, I. Baccarelli, F. Sebastianelli, F.A. Gianturco, Eur. Phys. J. D 60, 21 (2010)

    ADS  Article  Google Scholar 

  11. 11.

    S. Denifl, P. Sulzer, D. Huber, F. Zappa, M. Probst, T.D. Märk, P. Scheier, N. Injan, J. Limtrakul, R. Abouaf, H. Dunet, Angew. Chem. Int. Ed. 46, 5238 (2007)

    Article  Google Scholar 

  12. 12.

    C. Winstead, V. McKoy, Radiat. Phys. Chem. 77, 1258 (2008)

    ADS  Article  Google Scholar 

  13. 13.

    P. Papp, P. Shchukin, Š. Matejčík, J. Chem. Phys. 132, 014301 (2010)

    ADS  Article  Google Scholar 

  14. 14.

    Y.-F. Wang, S.X. Tian, J. Yang, Phys. Chem. Chem. Phys. 13, 15597 (2011)

    Article  Google Scholar 

  15. 15.

    M. Michaud, M. Bazin, L. Sanche, J. Chem. Phys. 137, 115103 (2012)

    ADS  Article  Google Scholar 

  16. 16.

    R. Barrios, P. Skurski, J. Simons, J. Phys. Chem. B 106, 7991 (2002)

    Article  Google Scholar 

  17. 17.

    R. Abouaf, J. Pommier, H. Dunet, Int. J. Mass Spectrom. 226, 397 (2003)

    ADS  Article  Google Scholar 

  18. 18.

    Z. Tan, Y. Xia, X. Liu, M. Zhao, Y. Ji, F. Li, B. Huang, Radiat. Environ. Biophys. 43, 173 (2004)

    Article  Google Scholar 

  19. 19.

    J. Berdys, P. Kurski, J. Simons, J. Phys. Chem. B 108, 5800 (2004)

    Article  Google Scholar 

  20. 20.

    J. Berdys, I. Anusiewicz, P. Kurski, J. Simons, J. Phys. Chem. A 108, 2999 (2004)

    Article  Google Scholar 

  21. 21.

    L. Caron, L. Sanche, Phys. Rev. A 72, 032726 (2005)

    ADS  Article  Google Scholar 

  22. 22.

    J. Simons, Acc. Chem. Res. 39, 772 (2006)

    Article  Google Scholar 

  23. 23.

    C. Winstead, V. McKoy, J. Chem. Phys. 125, 174304 (2006)

    ADS  Article  Google Scholar 

  24. 24.

    C. Winstead, V. McKoy, S. d’A. Sanchez, J. Chem. Phys. 127, 085105 (2007)

    ADS  Article  Google Scholar 

  25. 25.

    C. Winstead, V. McKoy, Phys. Rev. A 76, 012712 (2007)

    ADS  Article  Google Scholar 

  26. 26.

    C. Winstead, V. McKoy, Phys. Rev. Lett. 98, 113201 (2007)

    ADS  Article  Google Scholar 

  27. 27.

    S.A. Pshenichnyuk, G.A. Gallup, P.D. Burrow, J. Phys. Chem. A 111, 11837 (2007)

    Article  Google Scholar 

  28. 28.

    C. Winstead, V. McKoy, J. Chem. Phys. 125, 244302 (2006)

    ADS  Article  Google Scholar 

  29. 29.

    P.D. Burrow, G.A. Gallup, A. Modelli, J. Phys. Chem. A 112, 4106 (2008)

    Article  Google Scholar 

  30. 30.

    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Chem. Phys. 130, 164307 (2009)

    ADS  Article  Google Scholar 

  31. 31.

    C.J. Colyer, S.M. Bellm, F. Blanco, G. García, B. Lohmann, Phys. Rev. A 84, 042707 (2011)

    ADS  Article  Google Scholar 

  32. 32.

    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Chem. Phys. 136, 024324 (2012)

    ADS  Article  Google Scholar 

  33. 33.

    A. Dora, L. Bryjko, T. van Mourik, J. Tennyson, J. Phys. B 45, 175203 (2012)

    ADS  Article  Google Scholar 

  34. 34.

    S. Ptasińska, S. Denifl, P. Scheier, T.D. Märk, J. Chem. Phys. 120, 8505 (2004)

    ADS  Article  Google Scholar 

  35. 35.

    C. König, J. Kopyra, I. Bald, E. Illenberger, Phys. Rev. Lett. 97, 018105 (2006)

    ADS  Article  Google Scholar 

  36. 36.

    W.M. Huo, C.E. Dateo, G.D. Fletcher, Radiat. Meas. 41, 1202 (2006)

    Article  Google Scholar 

  37. 37.

    I. Bald, J. Kopyra, I. Dabkowska, E. Antonsson, E. Illenberger, J. Chem. Phys. 126, 074308 (2007)

    ADS  Article  Google Scholar 

  38. 38.

    C. Winstead, V. McKoy, Int. J. Mass Spectrom. 277, 279 (2008)

    ADS  Article  Google Scholar 

  39. 39.

    C. Winstead, V. McKoy, J. Chem. Phys. 125, 074302 (2006)

    ADS  Article  Google Scholar 

  40. 40.

    B. Renjith, S. Bhowmick, M.K. Mishra, M. Sarma, J. Phys. Chem. A 115, 13753 (2011)

    Article  Google Scholar 

  41. 41.

    A. Gauf, L.R. Hargreaves, A. Jo, J. Tanner, M.A. Khakoo, T. Walls, C. Winstead, V. McKoy, Phys. Rev. A 85, 052717 (2012)

    ADS  Article  Google Scholar 

  42. 42.

    L. Bryjko, T. van Mourik, A. Dora, J. Tennyson, J. Phys. B 43, 235203 (2010)

    ADS  Article  Google Scholar 

  43. 43.

    O. Boulanouar, M. Fromm, C. Mavon, P. Cloutier, L. Sanche, J. Chem. Phys. 139, 055101 (2013)

    ADS  Article  Google Scholar 

  44. 44.

    D.F. Regulla, U. Deffner, Int. J. Appl. Radiat. Isot. 33, 1101 (1982)

    Article  Google Scholar 

  45. 45.

    V. Nagy, J.M. Puhl, M.F. Desrosiers, Radiat. Phys. Chem. 57, 1 (2000)

    ADS  Article  Google Scholar 

  46. 46.

    S. Ebraheem, W.B. Beshira, S. Eid, R. Sobhy, A. Kovacs, Radiat. Phys. Chem. 67, 569 (2003)

    ADS  Article  Google Scholar 

  47. 47.

    W.L. McLaughlin, D.M. Taylor, Appl. Radiat. Isot. 47, 1 (1996)

    Article  Google Scholar 

  48. 48.

    S. Ptasińska, S. Denifl, P. Candori, Š. Matejčík, P. Scheier, T.D. Märk, Chem. Phys. Lett. 403, 107 (2005)

    ADS  Article  Google Scholar 

  49. 49.

    I. Ipolyi, P. Cicman, S. Denifl, V. Matejčík, P. Mach, J. Urban, P. Scheier, T.D. Märk, Š. Matejčík, Int. J. Mass Spectrom. 252, 228 (2006)

    ADS  Article  Google Scholar 

  50. 50.

    A.M. Scheer, P. Mozejko, G.A. Gallup, P.D. Burrow, J. Chem. Phys. 126, 174301 (2007)

    ADS  Article  Google Scholar 

  51. 51.

    B.P. Marinković, F. Blanco, D. Šević, V. Pejčev, G. García, D.M. Filipović, D. Pavlović, N.J. Mason, Int. J. Mass Spectrom. 277, 300 (2008)

    ADS  Article  Google Scholar 

  52. 52.

    R. Abouaf, Chem. Phys. Lett. 451, 25 (2008)

    ADS  Article  Google Scholar 

  53. 53.

    A. Osted, J. Kongsted, O. Christiansen, J. Phys. Chem. A 109, 1430 (2005)

    Article  Google Scholar 

  54. 54.

    F. Ferreira da Silva, S. Denifl, T.D. Märk, A.M. Ellis, P. Scheier, J. Chem. Phys. 132, 214306 (2010)

    ADS  Article  Google Scholar 

  55. 55.

    C.J. Gillan, J. Tennyson, P.G. Burke, in Computational methods for Electron-molecule collisions, edited by W. Huo, F.A. Gianturco (Plenum, 1995), pp. 239–254

  56. 56.

    J. Tennyson, Phys. Rep. 491, 29 (2010)

    ADS  Article  Google Scholar 

  57. 57.

    N.T. Padial, D.W. Norcross, L.A. Collins, J. Phys. B 14, 2901 (1981)

    ADS  Article  Google Scholar 

  58. 58.

    M.A. Morrison, Adv. At. Mol. Phys. 24, 51156 (1988)

    Google Scholar 

  59. 59.

    F.A. Gianturco, A. Jain, Phys. Rep. 143, 347 (1986)

    ADS  Article  Google Scholar 

  60. 60.

    N. Sanna, F.A. Gianturco, Comput. Phys. Commun. 114, 142 (1998)

    ADS  Article  MATH  Google Scholar 

  61. 61.

    J. Tennyson, D.B. Brown, J.J. Munro, I. Rozum, H.N. Varambhia, N. Vinci, J. Phys.: Conf. Ser. 86, 012001 (2007)

    ADS  Google Scholar 

  62. 62.

    J.M. Carr, P.G. Galiatsatos, J.D. Gorfinkiel, A.G. Harvey, M.A. Lysaght, D. Madden, Z. Mašin, M. Plummer, J. Tennyson, H.N. Varambhia, Eur. Phys. J. D 66, 58 (2012)

    ADS  Article  Google Scholar 

  63. 63.

    S. Blanco, A. Lesarri, J.C. López, J.L. Alonso, J. Am. Chem. Soc. 126, 11675 (2004)

    Article  Google Scholar 

  64. 64.

    National Institute of Standards and Technology, Standard Reference Data at http://cccbdb.nist.gov

  65. 65.

    M. Bode, M.S. Gordon, J. Mol. Graph. Model. 16, 133 (1998)

    Article  Google Scholar 

  66. 66.

    P.D. Godfrey, S. Firth, L.D. Hatherley, R.D. Brown, A.P. Pierlot, J. Am. Chem. Soc. 115, 9687 (1993)

    Article  Google Scholar 

  67. 67.

    A. Faure, J.D. Gorfinkiel, L.A. Morgan, J. Tennyson, Comput. Phys. Commun. 144, 224 (2002)

    ADS  Article  MATH  Google Scholar 

  68. 68.

    G. Danby, J. Tennyson, J. Phys. B 23, 1005 (1990)

    ADS  Article  Google Scholar 

  69. 69.

    J. Tennyson, C.J. Noble, Comput. Phys. Commun. 33, 421 (1984)

    ADS  Article  Google Scholar 

  70. 70.

    M.M. Fujimoto, W.J. Brigg, J. Tennyson, Eur. Phys. J. D 66, 204 (2012)

    ADS  Article  Google Scholar 

  71. 71.

    M. Tashiro, J. Chem. Phys. 129, 164308 (2008)

    ADS  Article  Google Scholar 

  72. 72.

    J.S. dos Santos, R.F. da Costa, M.T. do N. Varella, J. Chem. Phys. 136, 084307 (2012)

    ADS  Article  Google Scholar 

  73. 73.

    K. Aflatooni, B. Hitt, G.A. Gallup, P.D. Burrow, J. Chem. Phys. 115, 14 (2001)

    Article  Google Scholar 

  74. 74.

    P. Palihawadana, J.P. Sullivan, S.J. Buckman, Z. Masin, J.D. Gorfinkiel, F. Blanco, G. Garcia, M.J. Brunger, J. Chem. Phys. 139, 014308 (2013)

    ADS  Article  Google Scholar 

  75. 75.

    J.D. Gorfinkiel, J. Tennyson, J. Phys. B 37, L343 (2004)

    Article  Google Scholar 

  76. 76.

    J.D. Gorfinkiel, J. Tennyson, J. Phys. B 38, 1607 (2005)

    ADS  Article  Google Scholar 

  77. 77.

    M. Tarana, J. Tennyson, J. Phys. B 43, 045101 (2010)

    ADS  Article  Google Scholar 

  78. 78.

    R. Zhang, P.G. Galiatsatos, J. Tennyson, J. Phys. B 44, 195203 (2011)

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Milton M. Fujimoto.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Cite this article

Fujimoto, M., Tennyson, J. & Michelin, S. Low-energy electron collisions with the alanine molecule. Eur. Phys. J. D 68, 67 (2014). https://doi.org/10.1140/epjd/e2014-40673-x

Download citation

Keywords

  • Impact Energy
  • Integral Cross Section
  • Permanent Dipole Moment
  • Virtual Orbital
  • Partial Wave Expansion