Interaction mechanisms between dust grains in the presence of asymmetric ion flow and an external magnetic field in complex plasma

  • Saurav BhattacharjeeEmail author
  • Nilakshi Das
Regular Article


We have reported a theoretical study on the interaction mechanism between dust particles in the presence of asymmetric ion flow and an external magnetic field in complex plasma. The recent experimental and numerical results on the particle-wake interaction ensures the dominance of the wake effect in the subsonic regime of plasma flow using the cold ion approximation. The recent developments in dusty plasma research and its growing interest towards more realistic magnetized dusty plasma scenarios also demand serious attention to study the wake effect both in the sub and supersonic regimes in the presence of a magnetic field. It is a challenging task to develop a correct, quantitative theory of wake potential for different regimes of magnetic field and ion flow velocity. Analytic expressions for the wake potential have been reported in this paper for both subsonic and supersonic regimes in the presence of an external magnetic field along with Debye-Hückel type potentials. The results show that the wake potential plays a dominant role in the subsonic regime and its strength increases with an increase in magnetic field. The behaviour of the wake potential is found to have an interesting effect on the Coulomb crystallization of dust grains and is studied with the help of molecular dynamic (MD) simulation.


Plasma Physics 


  1. 1.
    J.H. Chu, I. Lin, Phys. Rev. Lett. 72, 4009 (1994)ADSCrossRefGoogle Scholar
  2. 2.
    H. Thomas, G.E. Morfill, V. Demmel, J. Goree, B. Feuerbacher, D. Möhlmann, Phys. Rev. Lett. 73, 652 (1994)Google Scholar
  3. 3.
    A. Melzer, I.V. Schweigert, A. Piel, Phys. Rev. Lett. 83, 3194 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    V.N. Tsytovich, Y.K. Khodataev, R. Bingham, Commun. Plasma Phys. Control. Fusion 17, 249 (1996)Google Scholar
  5. 5.
    M. Lampe, G. Joyce, G. Ganguli, V. Gavrishchaka, Phys. Plasmas 7, 3851 (2000)ADSCrossRefGoogle Scholar
  6. 6.
    V.A. Schweigert, I.V. Schweigert, A. Melzer, A. Homann, A. Piel, Phys. Rev. E 54, 4155 (1996)ADSCrossRefGoogle Scholar
  7. 7.
    A. Melzer, V.S. Schweigert, A. Piel, Phys. Scr. 61, 494 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    K. Takahasi, T. Oishi, K. Shimomami, Y. Hayashi, S. Nishino, Phys. Rev. E 58, 7805 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    N.N. Rao, P.K. Shukla, M.Y. Yu, Planet Space Sci. 38, 4 (1990)CrossRefGoogle Scholar
  10. 10.
    O. Ishihara, S.V. Vladimirov, Phys. Plasmas 4, 69 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    D.S. Lemons, M.S. Murillo, W. Daughton, D. Winske, Phys. Plasmas 7, 6 (2000)CrossRefGoogle Scholar
  12. 12.
    U. Konopka, G.E. Morfill, L. Ratke, Phys. Rev. Lett. 84, 891 (2000)ADSCrossRefGoogle Scholar
  13. 13.
    D. Samsonov, J. Goree, Z.W. Ma, A. Bhattacharjee, H.M. Thomas, G.E. Morfill, Phys. Rev. Lett. 83, 3649 (1999)ADSCrossRefGoogle Scholar
  14. 14.
    D. Samsonov, J. Goree, H.M. Thomas, G.E. Morfill, Phys. Rev. E 61, 5557 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    V. Nosenko, J. Goree, Z.W. Ma, A. Piel, Phys. Rev. Lett. 88, 135001 (2002)ADSCrossRefGoogle Scholar
  16. 16.
    J. Kong, T.W. Hyde, L. Matthews, K. Qiao, Z. Zhang, A. Douglass, Phys. Rev. E 84, 016411 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    T.W. Hyde, J. Kong, L.S. Matthews, Phys. Rev. E 87, 053106 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    E. Thomas Jr., R.L. Merlino, M. Rosenberg, Plasma Phys. Control. Fusion 54, 124034 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    L. Lanci, B. Delmonte, D.V. Kent, V. Maggi, P.E. Biscaye, J.-R. Petit, Quat. Sci. Rev. 33, 20 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    M. Schwabe, U. Konopka, P. Bandyopadhyay, G.E. Morfill, Phys. Rev. Lett. 106, 215004 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    N. Sato, G. Uchida, T. Kaneko, S. Shimizu, S. Lizuka, Phys. Plasmas 8, 1786 (2001)ADSCrossRefGoogle Scholar
  22. 22.
    U. Konopka, D. Samsonov, A.V. Ivlev, J. Goree, V. Steinberg, G.E. Morfill, Phys. Rev. E 61, 1890 (2000)ADSCrossRefGoogle Scholar
  23. 23.
    T. Ott, M. Bonitz, Phys. Rev. Lett. 107, 135003 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    K. Avinash, P.K. Shukla, R.L. Merlino, Phys. Scr. 86, 035504 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    S. Baruah, N. Das, Phys. Plasmas 17, 073702 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    M. Nambu, M. Salimullah, R. Bingham, Phys. Rev. E 63, 056403 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    M. Salimullah, P.K. Shukla, M. Nambu, H. Nitta, O. Ishihara, A.M. Rizwan, Phys. Plasmas 10, 3047 (2003)ADSCrossRefGoogle Scholar
  28. 28.
    J. Carstensen, F. Greiner, A. Piel, Phys. Rev. Lett. 109, 135001 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    S. Bhattacharjee, N. Das, Phys. Plasmas 19, 103707 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    P. Ludwig, H. Kählert, M. Bonitz, Plasma Phys. Control. Fusion 54, 045011 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    V. Steinberg, R. Stterlin, A.V. Ivlev, G. Morfill, Phys. Rev. Lett. 86, 4540 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    B. Annaratone, S. Khrapak, P. Bryant, G. Morfill, H. Rothermel, H. Thomas, M. Zuzic, V. Fortov, V. Molotkov, A. Nefedov, S. Krikalev, Y. Semenov, Phys. Rev. E 66, 1 (2002)CrossRefGoogle Scholar
  33. 33.
    O. Arp, J. Goree, A. Piel, Phys. Rev. E 85, 046409 (2012)ADSCrossRefGoogle Scholar
  34. 34.
    P. Ludwig, W.J. Miloch, H. Kahlert, M. Bonitz, New J. Phys. 14, 053016 (2012)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of PhysicsTezpur UniversityTezpurIndia

Personalised recommendations