Extensive spectroscopic calculations on 12 low-lying electronic states of AlN molecule including transition properties

  • Hui Liu
  • Deheng ShiEmail author
  • Jinfeng Sun
  • Zunlue Zhu
Regular Article


Using the CASSCF method followed by the internally contracted MRCI approach in combination with the correlation-consistent basis sets, the potential energy curves (PECs) are calculated for the X3Π, A3Σ-, B3Σ+, C3Π, E3Δ, a1Σ+, b1Π, c1Δ, d1Σ+, e1Π, 23Σ and 33Σ electronic states of AlN molecule for internuclear separations from 0.1 to 1.0 nm. All the electronic states correlate to the three dissociation channels, Al(2Pu) + N(4Su), Al(2Pu) + N(2Du) and Al(2Pu) + N(2Pu). Of these 12 electronic states, only the 23Σ possesses the double well. The PECs determined by the internally contracted MRCI approach are corrected for size-extensivity errors by means of the Davidson correction. The convergent behavior of present calculations is observed with respect to the basis set and level of theory. The effect of core-valence correlation and scalar relativistic corrections on the spectroscopic parameters is discussed. Scalar relativistic correction calculations are performed by the third-order Douglas-Kroll Hamiltonian approximation at the level of cc-pVTZ basis set. Core-valence correlation corrections are included with a cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The spectroscopic parameters are evaluated by fitting the first ten vibrational levels when available, which are obtained by solving the ro-vibrational Schrödinger equation with the Numerov’s method. The spectroscopic parameters are compared with those reported in the literature. Excellent agreement is found between the present results and the measurements. Analyses show that the spectroscopic parameters reported in this paper can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the A3Σ, B3Σ+, C3Π, a1Σ+ and b1Π electronic states to the ground state are calculated for several low vibrational levels, and some necessary discussion has been made.


Molecular Physics and Chemical Physics 


  1. 1.
    G. Meloni, K.A. Gingerich, J. Chem. Phys. 113, 10978 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    Z.-Y. Jiang, W.-J. Ma, H.-S. Wu, Z.-H. Jin, J. Mol. Struct. Theochem 678, 123 (2004)CrossRefGoogle Scholar
  3. 3.
    L.C. de Carvalho, A. Schleife, F. Fuchs, F. Bechstedt, Appl. Phys. Lett. 97, 232101 (2010)ADSCrossRefGoogle Scholar
  4. 4.
    J.D. Simmons, J.K. McDonald, J. Mol. Spectrosc. 41, 584 (1972)ADSCrossRefGoogle Scholar
  5. 5.
    M. Ebben, J.J. ter Meulen, Chem. Phys. Lett. 177, 229 (1991)ADSCrossRefGoogle Scholar
  6. 6.
    M. Pélissier, J.P. Malrieu, J. Mol. Spectrosc. 77, 322 (1979)ADSCrossRefGoogle Scholar
  7. 7.
    S.R. Langhoff, C.W. Bauschlicher, L.G.M. Pettersson, J. Chem. Phys. 89, 7354 (1988)ADSCrossRefGoogle Scholar
  8. 8.
    G.L. Gutsev, P. Jena, R.J. Bartlett, J. Chem. Phys. 110, 2928 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    S.K. Nayak, S.N. Khanna, P. Jena, Phys. Rev. B 57, 3787 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    A.K. Kandalam, R. Pandey, M.A. Blanco, A. Costales, J.M. Recio, J.M. Newsam, J. Phys. Chem. B 104, 4361 (2000)CrossRefGoogle Scholar
  11. 11.
    C. Chang, A.B.C. Patzer, E. Sedlmayr, T. Steinke, D. Sülzle, Chem. Phys. 271, 283 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Grant, D.A. Dixon, J. Phys. Chem. A 109, 10138 (2005)CrossRefGoogle Scholar
  13. 13.
    Z. Gan, D.J. Grant, R.J. Harrison, D.A. Dixon, J. Chem. Phys. 125, 124311 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Ončák, M. Srnec, J. Comput. Chem. 29, 233 (2008)CrossRefGoogle Scholar
  15. 15.
    R.D. Stull, H. Prophet, JANAF Thermochemical Tables, 2nd edn., NSRDS-NBS 37 (US Nat. Bur. Std., Washington, 1971)Google Scholar
  16. 16.
    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)ADSCrossRefGoogle Scholar
  18. 18.
    S.R. Langhoff, E.R. Davidson, Int. J. Quantum Chem. 8, 61 (1974)CrossRefGoogle Scholar
  19. 19.
    A. Richartz, R.J. Buenker, S.D. Peyerimhoff, Chem. Phys. 28, 305 (1978)ADSCrossRefGoogle Scholar
  20. 20.
    C.E. Moore, in Atomic Energy Levels, NSRDS-NBS (US Government Printing Office, Washington, 1971), Vol. 1 and references thereinGoogle Scholar
  21. 21.
    T.V. Mourik, A.K. Wilson, T.H. Dunning, Mol. Phys. 96, 529 (1999)CrossRefGoogle Scholar
  22. 22.
    T.V. Mourik, T.H. Dunning, Int. J. Quantum Chem. 76, 205 (2000)CrossRefGoogle Scholar
  23. 23.
    H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO 2010.1 a package of ab initio programs Google Scholar
  24. 24.
    D.E. Woona, T.H. Dunning, J. Chem. Phys. 103, 4572 (1995)ADSCrossRefGoogle Scholar
  25. 25.
    K.A. Peterson, T.H. Dunning, J. Chem. Phys. 117, 10548 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    M. Reiher, A. Wolf, J. Chem. Phys. 121, 2037 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    A. Wolf, M. Reiher, B.A. Hess, J. Chem. Phys. 117, 9215 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    M. Reiher, A. Wolf, J. Chem. Phys. 121, 10945 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    W.A.D. Jong, R.J. Harrison, D.A. Dixon, J. Chem. Phys. 114, 48 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    K.A. Peterson, R.A. Kendall, T.H. Dunning, J. Chem. Phys. 99, 1930 (1993)ADSCrossRefGoogle Scholar
  31. 31.
    D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993)ADSCrossRefGoogle Scholar
  32. 32.
    A. Halkier, T. Helgaker, P. Jorgensen, W. Klopper, H. Koch, J. Olsen, A.K. Wilson, Chem. Phys. Lett. 286, 243 (1998)ADSCrossRefGoogle Scholar
  33. 33.
    J.L.M.Q. González, D. Thompson, Comput. Phys. 11, 514 (1997)CrossRefGoogle Scholar
  34. 34.
    C.W. Bauschlicher, H. Partridge, Chem. Phys. Lett. 257, 601 (1996)ADSCrossRefGoogle Scholar
  35. 35.
    A. Karton, J.M.L. Martin, J. Chem. Phys. 125, 144313 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    H. Okabe, Photochemistry of Small Molecules (Wiley Interscience, New York, 1978)Google Scholar
  37. 37.
    R.J. Le Roy, LEVEL 75: A computer program for solving the radial Schrödinger equation for bound and quasibound levels (University of Waterloo, Waterloo, 2001), University of Waterloo Chemical Physics Research Report No. CP-642R3Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.College of Physics and Electronic EngineeringHenan Normal UniversityXinxiangP.R. China
  2. 2.College of Physics and Electronic EngineeringXinyang Normal UniversityXinyangP.R. China

Personalised recommendations