Advertisement

Geometrical, electronic, and magnetic properties of small ConAu (n = 1–9) clusters

  • Rui-Rui Liang
  • Jin LvEmail author
  • Hai-Shun Wu
Regular Article

Abstract

The configurations, stabilities, electronic, and magnetic properties of Co n Au (n = 1–9) clusters have been systematically investigated by using relativistic all-electron density functional theory with generalized gradient approximation. The growth way for Co n Au (n = 1, 3–7) clusters is Au-substituted Co n+1 clusters. And the growth way for Co n Au (n = 2, 8, 9) clusters is that the Au atom occupies a peripheral position of Co n clusters. The fragmentation energy and the second-order difference energy of the ground-state Co n Au clusters show a pronounced odd-even oscillation with the number of Co atoms, and the clusters exhibit higher stability at n = 5. Compared with corresponding pure Co n+1 clusters, the total magnetic moment is reduced by 2μ B for most of Co n Au clusters except n = 3 and 8. The magnetic moment contribution of Au atom is very small, and the doping-Au atom almost has no effect on the average magnetic moment of Co atom which still keeps about 2μ B of magnetism of pure Co n+1 clusters, resulting in the decreasing magnetism of the doping-Au cobalt clusters.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    F. Baletto, R. Ferrando, Rev. Mod. Phys. 77, 371 (2005)CrossRefADSGoogle Scholar
  2. 2.
    H.S. De, S. Krishnamurty, D. Mishra, S. Pal, J. Phys. Chem. C 115, 17278 (2011)CrossRefGoogle Scholar
  3. 3.
    H.S. De, S. Krishnamurty, S. Pal, Catal. Today 198, 106 (2012)CrossRefGoogle Scholar
  4. 4.
    Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Phys. Lett. A 358, 289 (2006)CrossRefADSGoogle Scholar
  5. 5.
    A. Kant, B. Strauss, J. Chem. Phys. 41, 3806 (1964)CrossRefADSGoogle Scholar
  6. 6.
    H.J. Fan, C.W. Liu, M.S. Liao, Chem. Phys. Lett. 273, 353 (1997)CrossRefADSGoogle Scholar
  7. 7.
    S. Datta, M. Kabir, S. Ganguly, B. Sanyal, T. Saha-Dasgupta, A. Mookerjee, Phys. Rev. B 76, 014429 (2007)CrossRefADSGoogle Scholar
  8. 8.
    C. Jamorski, A. Martinez, M. Castro, D.R. Salahub, Phys. Rev. B 55, 10905 (1997)CrossRefADSGoogle Scholar
  9. 9.
    D.G. Leopold, W.C. Lineberger, J. Chem. Phys. 85, 51 (1986)CrossRefADSGoogle Scholar
  10. 10.
    E.K. Parks, T.D. Klots, S.J. Riley, J. Chem. Phys. 92, 3813 (1990)CrossRefADSGoogle Scholar
  11. 11.
    A. Sebetci, Chem. Phys. 354, 196 (2008)CrossRefADSGoogle Scholar
  12. 12.
    J. Ho, K.M. Ervin, W.C. Lineberger, J. Chem. Phys. 93, 6987 (1990)CrossRefADSGoogle Scholar
  13. 13.
    K.P. Huber, G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1979)Google Scholar
  14. 14.
    J.L. Rodríguez-López, F. Aguilera-Granja, K. Michaelian, A. Vega, Phys. Rev. B 67, 174413 (2003)CrossRefADSGoogle Scholar
  15. 15.
    R.C. Weast, CRC Handbook of Chemistry and Physics (CRC Press, Cleveland, 1974)Google Scholar
  16. 16.
    Q. Sun, Q. Wang, B.K. Rao, P. Jena, Phys. Rev. Lett. 93, 186803 (2004)CrossRefADSGoogle Scholar
  17. 17.
    H.S. De, S. Krishnamurty, S. Pal, J. Phys. Chem. C 114, 6690 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Zhang, H. Zhang, L. Zhao, Y. Li, Y. Luo, J. Phys. Chem. A 116, 1493 (2012)CrossRefGoogle Scholar
  19. 19.
    S. Baishya, R.C. Deka, Comput. Theor. Chem. 1002, 1 (2012)CrossRefGoogle Scholar
  20. 20.
    D. Manzoor, S. Pal, S. Krishnamurty, J. Phys. Chem. C 117, 20982 (2013)CrossRefGoogle Scholar
  21. 21.
    H. Häkkinen, S. Abbet, A. Sanchez, U. Heiz, U. Landman, Angew. Chem. Int. Ed. 42, 1297 (2003)CrossRefGoogle Scholar
  22. 22.
    Y.F. Han, Z. Zhong, K. Ramesh, F. Chen, L. Chen, T. White, Q. Tay, S.N. Yaakub, Z. Wang, J. Phys. Chem. C 111, 8410 (2007)CrossRefGoogle Scholar
  23. 23.
    J.M. Yan, X.B. Zhang, T. Akita, M. Haruta, Q. Xu, J. Am. Chem. Soc. 132, 5326 (2010)CrossRefGoogle Scholar
  24. 24.
    D.F. Zhang, Q. Zhang, W.F. Huang, L. Guo, W.M. Chen, W.S. Chu, C. Chen, Z.Y. Wu, ACS Appl. Mater. Int. 4, 5643 (2012)CrossRefGoogle Scholar
  25. 25.
    L. Leite, V. Stonkus, L. Llieva, L. Plyasova, T. Tabakova, D. Andreeva, E. Lukevics, Catal. Commun. 3, 341 (2002)CrossRefGoogle Scholar
  26. 26.
    J. Graciani, J. Oviedo, J.F. Sanz, J. Phys. Chem. B 110, 11600 (2006)CrossRefGoogle Scholar
  27. 27.
    S. Neukermans, E. Janssens, H. Tanaka, R.E. Silverans, P. Lievens, Phys. Rev. Lett. 90, 033401 (2003)CrossRefADSGoogle Scholar
  28. 28.
    M. Zhang, L.M. He, L.X. Zhao, X.J. Feng, Y.H. Luo, J. Phys. Chem. C 113, 6491 (2009)CrossRefGoogle Scholar
  29. 29.
    A. Yang, W. Fa, J. Dong, J. Phys. Chem. A 114, 4031 (2010)CrossRefGoogle Scholar
  30. 30.
    N.F. Shen, J.L. Wang, L.Y. Zhu, Chem. Phys. Lett. 467, 114 (2008)CrossRefADSGoogle Scholar
  31. 31.
    S. Datta, M. Kabir, T.S. Dasgupta, A. Mookerjee, Phys. Rev. B 80, 085418 (2009)CrossRefADSGoogle Scholar
  32. 32.
    Y. Zhang, Y.N. Duan, J.M. Zhang, K.W. Xu, J. Magn. Magn. Mater. 323, 842 (2011)CrossRefADSGoogle Scholar
  33. 33.
    J. Lv, X. Bai, J.F. Jia, X.H. Xu, H.S. Wu, Physica B 407, 14 (2012)CrossRefADSGoogle Scholar
  34. 34.
    L. Guo, J. Nanopart. Res. 14, 957 (2012)CrossRefGoogle Scholar
  35. 35.
    B. Delley, J. Chem. Phys. 92, 508 (1990)CrossRefADSGoogle Scholar
  36. 36.
    B. Delley, J. Chem. Phys. 113, 7756 (2000)CrossRefADSGoogle Scholar
  37. 37.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)CrossRefADSGoogle Scholar
  38. 38.
    B. Delley, Int. J. Quantum Chem. 69, 423 (1998)CrossRefGoogle Scholar
  39. 39.
    Q.L. Lu, L.Z. Zhu, L. Ma, G.H. Wang, Chem. Phys. Lett. 407, 176 (2005)CrossRefADSGoogle Scholar
  40. 40.
    L. Vitos, A.V. Ruban, H.L. Skriver, J. Kollár, Surf. Sci. 411, 186 (1998)CrossRefADSGoogle Scholar
  41. 41.
    C. Kittel, Introduction to Solid State Physics, 8th edn. (Wiley, New York, 2005)Google Scholar
  42. 42.
    M. Wang, X. Huang, Z. Du, Y. Li, Chem. Phys. Lett. 480, 258 (2009)CrossRefADSGoogle Scholar
  43. 43.
    R.R. Zope, T. Baruah, Phys. Rev. A 64, 053202 (2001)CrossRefADSGoogle Scholar
  44. 44.
    S.F. Li, X.G. Gong, Phys. Rev. B 74, 045432 (2006)CrossRefADSGoogle Scholar
  45. 45.
    D. Die, X.Y. Kuang, B. Zhu, J.J. Guo, Physica B 406, 3160 (2011)CrossRefADSGoogle Scholar
  46. 46.
    M.A. Tafoughalt, M. Samah, Physica B 407, 2014 (2012)CrossRefADSGoogle Scholar
  47. 47.
    N.S. Venkataramanan, R. Sahara, H. Mizuseki, Y. Kawazoe, J. Phys. Chem. A 114, 5049 (2010)CrossRefGoogle Scholar
  48. 48.
    S.F. Li, Z. Shao, S. Han, X. Xue, F. Wang, Q. Sun, Y. Jia, Z.X. Guo, J. Chem. Phys. 131, 184301 (2009)CrossRefADSGoogle Scholar
  49. 49.
    M. Pérez, F. Muñoz, J. Mejía-López, G. Martínez, J. Nanopart. Res. 14, 933 (2012)CrossRefGoogle Scholar
  50. 50.
    G.W. Zhang, Y.P. Feng, C.K. Ong, Phys. Rev. B 54, 17208 (1996)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Chemistry and Material ScienceShanxi Normal UniversityLinfenP.R. China

Personalised recommendations