Advertisement

A nonperturbative approach to induced transitions between atomic states by weak electromagnetic waves

  • Qiong-Gui LinEmail author
Regular Article
  • 113 Downloads

Abstract

We restudy the transitions between atomic states induced by electromagnetic waves (absorption or induced emission) of ordinary optical sources. Though the electromagnetic field is weak in this case, the result of standard treatment by time-dependent perturbation theory is obviously unreasonable in the near resonant region. In spite of the continuous developments of nonperturbative methods for relevant subjects, an explicit nonperturbative solution still seems not available. We present a nonperturbative approach to the problem for near resonant fields and give an explicit solution, albeit approximate. All transition probabilities take Rabi oscillation forms involving several frequencies. Under the perturbation condition our results reduce to those of perturbation theory. In the general results, the electric-dipole selection rules are approximately recovered only for short time. For large time, however, probabilities for forbidden transitions may become comparable with those for allowed ones.

Keywords

Atomic Physics 

References

  1. 1.
    L.I. Schiff, Quantum Mechanics, 3rd edn. (McGraw-Hill, New York, 1968) Google Scholar
  2. 2.
    L.D. Landau, E.M. Lifshitz, Quantum Mechanics, Non-relativistic Theory, 3rd edn. (Pergamon, Oxford, 1977) Google Scholar
  3. 3.
    A. Messiah, Quantum Mechanics (North-Holland, Amsterdam, 1962), Vol. 2 Google Scholar
  4. 4.
    J.J. Sakurai, in Modern Quantum Mechanics, edited by S.F. Tuan, revised edition (Addison-Wesley, Reading, Massachusetts, 1994) Google Scholar
  5. 5.
    K.T. Hecht, Quantum Mechanics (Springer, New York, 2000) Google Scholar
  6. 6.
    J.S. Bakos, Phys. Rep. 31, 209 (1977) ADSCrossRefGoogle Scholar
  7. 7.
    N.L. Manakov, V.D. Ovsiannikov, L.P. Rapoport, Phys. Rep. 141, 320 (1986) ADSCrossRefGoogle Scholar
  8. 8.
    P. Stehle, Phys. Rep. 156, 67 (1987) ADSCrossRefGoogle Scholar
  9. 9.
    N.B. Delone, V.P. Kraǐnov, Phys. Usp. 42, 669 (1999) CrossRefGoogle Scholar
  10. 10.
    S.-I. Chu, D.A. Telnov, Phys. Rep. 390, 1 (2004) ADSCrossRefMathSciNetGoogle Scholar
  11. 11.
    B.J. Sussman, Am. J. Phys. 79, 477 (2011) ADSCrossRefGoogle Scholar
  12. 12.
    S.H. Autler, C.H. Townes, Phys. Rev. 100, 703 (1955) ADSCrossRefGoogle Scholar
  13. 13.
    J.H. Shirley, Phys. Rev. 138, B979 (1965) ADSCrossRefGoogle Scholar
  14. 14.
    H. Sambe, Phys. Rev. A 7, 2203 (1973) ADSCrossRefGoogle Scholar
  15. 15.
    S. Swain, J. Phys. A 6, 192 (1973) ADSCrossRefGoogle Scholar
  16. 16.
    S. Swain, J. Phys. A 6, 1919 (1973) ADSCrossRefGoogle Scholar
  17. 17.
    S. Swain, J. Phys. A 7, L52 (1974) ADSCrossRefGoogle Scholar
  18. 18.
    G.W. Drake, R.B. Grimley, Phys. Rev. A 11, 1614 (1975) ADSCrossRefGoogle Scholar
  19. 19.
    J.V. Moloney, W.J. Meath, Mol. Phys. 31, 1537 (1976) ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    S.R. Barone, M.A. Narcowich, F.J. Narcowich, Phys. Rev. A 15, 1109 (1977) ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    S.-I. Chu, W.P. Reinhardt, Phys. Rev. Lett. 39, 1195 (1977) ADSCrossRefGoogle Scholar
  22. 22.
    H.S. Zivi, A. Bauder, Hs.H. Günthard, Chem. Phys. 93, 179 (1985) ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    S.-I. Chu, T.-F. Jiang, Comput. Phys. Commun. 63, 482 (1991) ADSCrossRefzbMATHGoogle Scholar
  24. 24.
    D.F. Martinez, J. Phys. A 38, 9979 (2005) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    S.-Y. Xie, F. Jia, Y.-P. Yang, Opt. Commun. 273, 451 (2007) ADSCrossRefGoogle Scholar
  26. 26.
    L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Prog. Phys. 41, 587 (1978) ADSCrossRefGoogle Scholar
  27. 27.
    A. del Campo, Phys. Rev. A 84, 012113 (2011) and references therein ADSCrossRefGoogle Scholar
  28. 28.
    E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, 4th edn. (Cambridge University Press, Cambridge, 1927) Google Scholar
  29. 29.
    Z.-Q. Ma, Group Theory for Physicists (World Scientific, Singapore, 2007) Google Scholar
  30. 30.
    W.-K. Tung, Group Theory in Physics (World Scientific, Singapore, 1985) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.School of Physics and Engineering, Sun Yat-Sen UniversityGuangzhouP.R. China

Personalised recommendations