Advertisement

Structural, magnetic and electronic properties of FexCoyIrz (x + y + z = 5, 6) clusters: an ab initio study

  • Assa Aravindh Sasikala DeviEmail author
Regular Article

Abstract

Investigations on freestanding binary and ternary clusters of Fe x Co y Ir z (x + y + z = 5, 6) are carried out using ab initio density functional theory techniques. The geometry, chemical order, binding energy, magnetic moment and electronic structure of the clusters are analyzed for the entire range of composition. Composition dependent structural transition is observed in the five atom clusters, while octahedral geometry prevailed in clusters with six atoms. Both the clusters show increment in binding energy with the increase in number of heterogeneous bonds. Analysis based on the chemical order parameter indicates that clusters favor mixing rather than segregation. The clusters exhibit ferromagnetic ordering and the inter-dependence of optimal cluster geometry to the magnetic moments and electronic structure is observed.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    E.K. Park, B.H. Weiller, P.S. Bechthold, W.F. Hoffman, G.C. Nieman, L.G. Pobo, S.J. Riley, J. Chem. Phys. 88, 1622 (1988) ADSCrossRefGoogle Scholar
  2. 2.
    R. Liyange, J.B. Griffin, P.B. Armentrout, J. Chem. Phys. 119, 8979 (2003) ADSCrossRefGoogle Scholar
  3. 3.
    T.M. Trivikram, R. Rajeev, K.P.M. Rishad, J. Jha, M. Krishnamurthy, Phys. Rev. Lett. 111, 143401 (2013) ADSCrossRefGoogle Scholar
  4. 4.
    J.L. Chen, C.S. Wang, K.A. Jackson, M.R. Pederson, Phys. Rev. B 44, 6558 (1991) ADSCrossRefGoogle Scholar
  5. 5.
    X.G. Gong, Q.Q. Zheng, J. Phys.: Condens. Matter 7, 2421 (1995) ADSGoogle Scholar
  6. 6.
    Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Solid State Commun. 142, 114 (2007) ADSCrossRefGoogle Scholar
  7. 7.
    Q.M. Ma, Z. Xie, J. Wang, Y. Liu, Y.C. Li, Solid State Commun. 142, 114 (2007) ADSCrossRefGoogle Scholar
  8. 8.
    M.J. Piotrowski, P. Piquini, M.M. Odashima, J.L.F. Da Silva, J. Chem. Phys. 134, 134105 (2011) ADSCrossRefGoogle Scholar
  9. 9.
    J. Du, G. Wu, J. Wang, J. Phys. Chem. A 114, 10508 (2010) CrossRefGoogle Scholar
  10. 10.
    N.T. Tung, E. Janssens, P. Lievens, Appl. Phys. B 114, 497 (2013) ADSCrossRefGoogle Scholar
  11. 11.
    S. Ganguly, M. Kabir, S. Datta, B. Sanyal, A. Mookerjee, Phys. Rev. B 78, 014402 (2008) ADSCrossRefGoogle Scholar
  12. 12.
    R.L. Johnston, R. Ferrando, Faraday Discuss. 138, 1 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    J.C. Slater, J. Appl. Phys. 8, 385 (1937) ADSCrossRefGoogle Scholar
  14. 14.
    L. Pauling, Phys. Rev. 54, 899 (1938) ADSCrossRefzbMATHGoogle Scholar
  15. 15.
    R.M. Bozorth, Ferromagnetism (Van Nostrand, New York, 1951) Google Scholar
  16. 16.
    C. Binns, S.H. Baker, M.J. Maher, S.C. Thornton, S. Louch, S.S. Dhesi, N.B. Brookes, Eur. Phys. J. D 16, 189 (2001) ADSCrossRefGoogle Scholar
  17. 17.
    C. Binns, S.H. Baker, K.W. Edmonds, P. Finetti, M.J. Maher, S.C. Louch, S.S. Dhesi, N.B. Brookes, Physica B 318, 350 (2002) ADSCrossRefGoogle Scholar
  18. 18.
    Y. Xie, J.A. Blackman, Phys. Rev. B 66, 085410 (2002) ADSCrossRefGoogle Scholar
  19. 19.
    A. Bergman, E. Holmstrom, A.M.N. Niklasson, L. Nordstrom, S. Frosta-Pessoa, O. Eriksson, Phys. Rev. B 70, 174446 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    M. Pratzer, H.J. Elmers, Phys. Rev. B 69, 134418 (2004) ADSCrossRefGoogle Scholar
  21. 21.
    M. Moskovits, D.P. Diella, J. Chem. Phys. 73, 4917 (1980) ADSCrossRefGoogle Scholar
  22. 22.
    P.A. Montano, G.K. Shenoy, Solid State Commun. 35, 53 (1980) ADSCrossRefGoogle Scholar
  23. 23.
    D. Hobbs, G. Kresse, J. Hafner, Phys. Rev. B 62, 11556 (2000) ADSCrossRefGoogle Scholar
  24. 24.
    G. Mpourmpakis, G.E. Froudakis, A.N. Andriotis, M. Menon, Phys. Rev. B 72, 104417 (2005) ADSCrossRefGoogle Scholar
  25. 25.
    O. Diegez, M.M.G. Alemany, C. Rey, P. Ordejon, L.J. Gallego, Phys. Rev. B 63, 205407 (2001) ADSCrossRefGoogle Scholar
  26. 26.
    I.M.L. Billas, A. Chatelain, W.A. de Heer, J. Magn. Magn. Mater. 168, 64 (1997) ADSCrossRefGoogle Scholar
  27. 27.
    S. Bornemann, O. Sipr, S. Mankovsky, S. Polesya, J.B. Staunton, W. Wurth, H. Ebert, J. Minar, Phys. Rev. B 86, 104436 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    S.D. Maloney, M.J. Kelley, D.C. Koningsberger, B.C. Gates, J. Phys. Chem. 95, 9406 (1991) CrossRefGoogle Scholar
  29. 29.
    J.N. Feng, X.R. Huang, Z.S. Li, Chem. Phys. Lett. 276, 334 (1997) ADSCrossRefGoogle Scholar
  30. 30.
    C. Bussai, S. Kruger, G. Vayssilov, N. Rosch, Phys. Chem. Chem. Phys. 13, 2656 (2005) CrossRefGoogle Scholar
  31. 31.
    T. Pawluk, Y. Hirata, L. Wang, J. Phys. Chem. B 109, 20817 (2005) CrossRefGoogle Scholar
  32. 32.
    P. Giannozzi et al., J. Phys.: Condens. Matter 21, 395502 (2009) Google Scholar
  33. 33.
    A.M. Rappe, K.M. Rabe, E. Kaxiras, J.D. Joanopoulos, Phys. Rev. B 41, 1227 (1990) ADSCrossRefGoogle Scholar
  34. 34.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    R.C. Longo, M.M.G. Alemany, A. Vega, J. Ferrer, L.J. Gallego, Nanotechnology 19, 245701 (2008) ADSCrossRefGoogle Scholar
  36. 36.
    F.A. Granja, A. Vega, Phys. Rev. B 79, 144423 (2009) ADSCrossRefGoogle Scholar
  37. 37.
    F.A. Granja, R.C. Longo, L.J. Gallego, A. Vega, J. Chem. Phys. 132, 184507 (2010) ADSCrossRefGoogle Scholar
  38. 38.
    H. Purdum, P.A. Montano, G.K. Shenoy, T. Morrison, Phys. Rev. B. 25, 4412 (1982) ADSCrossRefGoogle Scholar
  39. 39.
    T. Oda, A. Pasquarello, R. Car, Phys. Rev. Lett. 80, 3622 (1998) ADSCrossRefGoogle Scholar
  40. 40.
    P. Ballone, R.O. Jones, Chem. Phys. Lett. 233, 632 (1995) ADSCrossRefGoogle Scholar
  41. 41.
    Z. Sljivancanin, A. Pasquarello, Phys. Rev. Lett. 90, 247202 (2003) ADSCrossRefGoogle Scholar
  42. 42.
    M. Castro, C. Jamorski, D.R. Salahub, Chem. Phys. Lett. 271, 133 (1997) ADSCrossRefGoogle Scholar
  43. 43.
    G.L. Gustev, C.W. Bauschlicher Jr., J. Phys. Chem. A 107, 7013 (2003) CrossRefGoogle Scholar
  44. 44.
    G. Rollman, P. Entel, S. Sahoo, Comput. Mater. Sci. 35, 275 (2006) CrossRefGoogle Scholar
  45. 45.
    S. Chretien, D.R. Salahub, Phys. Rev. B 66, 155425 (2002) ADSCrossRefGoogle Scholar
  46. 46.
    S. Assa Aravindh, Appl. Nanosci. (2013), DOI:  10.1007/s13204-013-0232-y
  47. 47.
    F. Dustelle, Cohesion and Structure (North Holland, Amsterdam, 1991), Vol. 3 Google Scholar
  48. 48.
    G.G. Ramirez, J. Robles, A. Vega, F.A. Granja, J. Chem. Phys. 134, 054101 (2011) ADSCrossRefGoogle Scholar
  49. 49.
    S. Yu, S. Chen, W. Zhang, L. Yu, Y. Yin, Chem. Phys. Lett. 446, 217 (2007) ADSCrossRefGoogle Scholar
  50. 50.
    J. Dorantes-Davila, H. Dreysse, G.M. Pastor, Phys. Rev. B 46, 10432 (1992) ADSCrossRefGoogle Scholar
  51. 51.
    G.M. Pastor, R. Hirsch, B. Muhlschlegel, Phys. Rev. Lett. 72, 3879 (1994) ADSCrossRefGoogle Scholar
  52. 52.
    C. Kittel, Introduction to Solid State Physics (Wiley, New York, 1996) Google Scholar
  53. 53.
    G. Rollmann, S. Sahoo, P. Entel, Phys. Stat. Sol. A 201, 3263 (2004) ADSCrossRefGoogle Scholar
  54. 54.
    P. Pardia, A. Kundu, S.K. Pati, J. Clust. Sci. 20, 255 (2009) Google Scholar
  55. 55.
    R.G. Parr, W. Yang, Density Functional Theory for Atoms and Molecules (Oxford University Press, New York, 1982) Google Scholar
  56. 56.
    R.G. Pearson, Chemical Hardness (John Wiley-VCH, Weinheim, 1997) Google Scholar
  57. 57.
    M.K. Harbola, Proc. Natl. Acad. Sci. USA 89, 1036 (1992) ADSCrossRefGoogle Scholar
  58. 58.
    J. Jellinek, P.H. Acioli, J. Garciá-Rodeja, W. Zheng, O.C. Thomas, K.H. Bowen Jr., Phys. Rev. B 74, 153401 (2006) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Theoretical Physics, Institute of Mathematical Sciences, IV Cross Road, CIT Campus, TaramaniChennaiIndia

Personalised recommendations