Advertisement

Time and spatial resolved optical and electrical characteristics of continuous and time modulated RF plasmas in contact with conductive and dielectric substrates

  • Sven Hofmann
  • Koen van Gils
  • Steven van der Linden
  • Sylvain Iseni
  • Peter Bruggeman
Regular Article

Abstract

Cold atmospheric pressure plasma jets are often used as a remote plasma source for substrate treatments. However, this substrate acts as an electrode and this additional electrode can induce effects on plasma parameters such as the dissipated power, gas temperature, etc. In this work the influence of substrates of different conductivity and permittivity in direct contact with three different operational modes of atmospheric pressure RF plasma jets is investigated. Two different electrode configurations (creating either a linear or a cross electric field) and, for the linear field configuration, two voltage modulations (continuous RF and kHz pulsed RF) have been studied. Electrical and optical diagnostic methods have been performed in order to get quantitative data of the change in plasma dissipated power and gas temperature, when the plasma is in direct contact with the substrate. In all three investigated cases the power dissipation and gas temperature, significantly increase when the plasma is in direct contact with a conductive substrate. The increase of power is attributed to a change of the equivalent electrical circuit, leading to a more favourable matching between the power input and the plasma source.

Keywords

Plasma Physics 

References

  1. 1.
    L. Bárdos, H. Baránková, Thin Solid Films 518, 6705 (2010) CrossRefGoogle Scholar
  2. 2.
    J. Heinlin, G. Morfill, M. Landthaler, W. Stolz, G. Isbary, J.L. Zimmermann, T. Shimizu, S. Karrer, J. Dtsch. Dermatol. Ges. 8, 968 (2010) Google Scholar
  3. 3.
    M. Laroussi, IEEE Trans. Plasma Sci. 37, 714 (2009) ADSCrossRefGoogle Scholar
  4. 4.
    S. Kalghatgi et al., in Plasma Assisted Decontamination of Biological and Chemical Agents, edited by A. Fridman, S. Gçüeri (Springer Science-Business Media B.V., 2008), pp. 173–181 Google Scholar
  5. 5.
    G.B. McCombs, M.L. Darby, Int. J. Dent. Hygiene 8, 10 (2010) CrossRefGoogle Scholar
  6. 6.
    G. Lloyd, G. Friedman, S. Jafri, G. Schultz, A. Fridman, K. Harding, Plasma Process. Polym. 7, 194 (2010) CrossRefGoogle Scholar
  7. 7.
    H.W. Lee, G.Y. Park, Y.S. Seo, Y.H. Im, S.B. Shim, H.J. Lee, J. Phys. D 44, 053001 (2011) ADSCrossRefGoogle Scholar
  8. 8.
    M.G. Kong, G. Kroesen, G. Morfill, T. Nosenko, T. Shimizu, J. Van Dijk, J.L. Zimmermann, New J. Phys. 11, 115012 (2009) ADSCrossRefGoogle Scholar
  9. 9.
    G. Morfill, M. Kong, J. Zimmermann, New J. Phys. 11, 115011 (2009) ADSCrossRefGoogle Scholar
  10. 10.
    M. Laroussi, IEEE Trans. Plasma Sci. 24, 1188 (1996) ADSCrossRefGoogle Scholar
  11. 11.
    K. Kelly-Wintenberg, T.C. Montie, C. Brickman, J.R. Roth, A.K. Carr, K. Sorge, L.C. Wadsworth, P.P. Tsai, J. Ind. Microbiol. Biotechnol. 20, 69 (1998) CrossRefGoogle Scholar
  12. 12.
    A. Schütze, J.Y. Jeong, S.E. Babayan, J. Park, G.S. Selwyn, R.F. Hicks, IEEE Trans. Plasma Sci. 26, 1685 (1998) ADSCrossRefGoogle Scholar
  13. 13.
    X. Lu, M. Laroussi, V. Puech, Plasma Sources Sci. Technol. 21, 34005 (2012) CrossRefGoogle Scholar
  14. 14.
    G.Y. Park, S.J. Park, M.Y. Choi, I.G. Koo, J.H. Byun, J.W. Hong, J.Y. Sim, G.J. Collins, J.K. Lee, Plasma Sources Sci. Technol. 21, 043001 (2012) ADSCrossRefGoogle Scholar
  15. 15.
    H.E. Wagner, R. Brandenburg, K.V. Kozlov, A. Sonnenfeld, P. Michel, J.F. Behnke, Vacuum 71, 417 (2003) CrossRefGoogle Scholar
  16. 16.
    G.E. Morfill, T. Shimizu, B. Steffes, H.U. Schmidt, New J. Phys. 11, 115019 (2009) ADSCrossRefGoogle Scholar
  17. 17.
    M. Kuchenbecker, N. Bibinov, A. Kaemlimg, D. Wandke, P. Awakowicz, W. Viöl, J. Phys. D 42, 045212 (2009) ADSCrossRefGoogle Scholar
  18. 18.
    D. Dobrynin, G. Fridman, G. Friedman, A. Fridman, New J. Phys. 11, 115020 (2009) ADSCrossRefGoogle Scholar
  19. 19.
    N.Y. Babaeva, M.J. Kushner, J. Phys. D 43, 185206 (2010) ADSCrossRefGoogle Scholar
  20. 20.
    G. Fridman, A.D. Brooks, M. Balasubramanian, A. Fridman, A. Gutsol, V.N. Vasilets, H. Ayan, G. Friedman, Plasma Process. Polym. 4, 370 (2007) CrossRefGoogle Scholar
  21. 21.
    E.P. van der Laan, E. Stoffels, M. Steinbuch, Plasma Sources Sci. Technol. 15, 582 (2006) ADSCrossRefGoogle Scholar
  22. 22.
    Y. Sakiyama, D.B. Graves, E. Stoffels, J. Phys. D 41, 95204 (2008) CrossRefGoogle Scholar
  23. 23.
    Y. Kim, M.S. Cha, W.H. Shin, Y.H. Song, J. Korean Phys. Soc. 43, 732 (2003) Google Scholar
  24. 24.
    S. Bornholdt, M. Wolter, H. Kersten, Eur. Phys. J. D 60, 653 (2010) ADSCrossRefGoogle Scholar
  25. 25.
    E. Stoffels, I.E. Kieft, R.E.J. Sladek, L.J.M. van den Bedem, E.P. van der Laan, M. Steinbuch, Plasma Sources Sci. Technol. 15, S169 (2006) ADSCrossRefGoogle Scholar
  26. 26.
    M. Dünnbier, A. Schmidt-Bleker, J. Winter, M. Wolfram, R. Hippler, K.D. Weltmann, S. Reuter, J. Phys. D 46, 435203 (2013) CrossRefGoogle Scholar
  27. 27.
    D. Maletić, N. Puač, S. Lazović, G. Malović, T. Gans, V. Schulz-von der Gathen, Z.L. Petrović, Plasma Phys. Control. Fusion 54, 124046 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    U. Kaatze, J. Chem. Eng. Data 34, 371 (1989) CrossRefGoogle Scholar
  29. 29.
    Conductivity and Resistivity Values for Aluminum & Alloys, http://www.ndt-ed.org/
  30. 30.
  31. 31.
  32. 32.
    S. Hofmann, A.F.H. van Gessel, T. Verreycken, P. Bruggeman, Plasma Sources Sci. Technol. 20, 065010 (2011) ADSCrossRefGoogle Scholar
  33. 33.
    J. Walsh, M. Kong, Appl. Phys. Lett. 93, 111501 (2008) ADSCrossRefGoogle Scholar
  34. 34.
    V. Léveillé, S. Coulombe, Meas. Sci. Technol. 17, 3027 (2006) ADSCrossRefGoogle Scholar
  35. 35.
    P. Bruggeman, F. Iza, P. Guns, D. Lauwers, M.G. Kong, Y.A. Aranda-Gonzalvo, C. Leys, D.C. Schram, Plasma Sources Sci. Technol. 19, 15016 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    S. Hofmann, P. Bruggeman, IEEE Trans. Plasma Sci. 39, 2 (2011) CrossRefGoogle Scholar
  37. 37.
    E. Castaños Martínez, M. Moisan, Y. Kabouzi, J. Phys. D 42, 012003 (2009) ADSCrossRefGoogle Scholar
  38. 38.
    J. Schäfer, R. Foest, A. Ohl, K.D. Weltmann, Plasma Phys. Control. Fusion 51, 124045 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    S. Hofmann, A. Sobota, P. Bruggeman, IEEE Trans. Plasma Sci. 40, 2888 (2012) ADSCrossRefGoogle Scholar
  40. 40.
    D.B. Kim, S.Y. Moon, H. Jung, B. Gweon, W. Choe, Phys. Plasmas 17, 053508 (2010) ADSCrossRefGoogle Scholar
  41. 41.
    N. Balcon, A. Aanesland, R. Boswell, Plasma Sources Sci. Technol. 16, 217 (2007) ADSCrossRefGoogle Scholar
  42. 42.
    R. Ye, T. Ishigaki, T. Sakuta, Plasma Sources Sci. Technol. 14, 387 (2005) ADSCrossRefGoogle Scholar
  43. 43.
    C.A.J. van Gils, S. Hofmann, B.K.H.L. Boekema, R. Brandenburg, P.J. Bruggeman, J. Phys. D 46, 175203 (2013) ADSCrossRefGoogle Scholar
  44. 44.
    A.F.H. van Gessel, Ph.D. thesis, Eindhoven University of Technology, 2013 Google Scholar
  45. 45.
    A.F.H. van Gessel, K.M.J. Alards, P.J. Bruggeman, J. Phys. D 46, 265202 (2013) ADSCrossRefGoogle Scholar
  46. 46.
    A. Sobota, J. Van Dijk, M. Haverlag, J. Phys. D 44, 224003 (2011) ADSCrossRefGoogle Scholar
  47. 47.
    S. Zhang, W. van Gaens, A.F.H. van Gessel, S. Hofmann, E. van Veldhuizen, A. Bogaerts, P. Bruggeman, J. Phys. D 46, 205202 (2013) ADSCrossRefGoogle Scholar
  48. 48.
    G.C.Y. Chan, J.T. Shelley, J.S. Wiley, C. Engelhard, A.U. Jackson, R.G. Cooks, G.M. Hieftje, Anal. Chem. 83, 3675 (2011) CrossRefGoogle Scholar
  49. 49.
    O. Motret, C. Hibert, S. Pellerin, J.M. Pouvesle, J. Phys. D 33, 1493 (2000) ADSCrossRefGoogle Scholar
  50. 50.
    P. Bruggeman, D.C. Schram, M.G. Kong, C. Leys, Plasma Process. Polym. 6, 751 (2009) CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sven Hofmann
    • 1
  • Koen van Gils
    • 1
  • Steven van der Linden
    • 1
  • Sylvain Iseni
    • 1
  • Peter Bruggeman
    • 1
  1. 1.Department of Applied PhysicsElementary Processes in Gas Discharges, Eindhoven University of TechnologyEindhovenThe Netherlands

Personalised recommendations