Advertisement

Adjustable electromagnetically induced transparency and absorption, optical controlled-phase gate in semiconductor quantum wells

  • Xiao-Qing Luo
  • Deng-Long WangEmail author
  • Yan-Chao She
  • Heng Fan
  • Wu-Ming Liu
Regular Article

Abstract

We investigate theoretically both the linear and nonlinear properties of the probe and signal optical pulsed fields in a system of four-level coupled GaAs/AlGaAs quantum wells with spontaneous decay of the longitudinal optical phonons (SDLOP) between the lower excited state and the ground state levels. In the linear range, we predict the existence of electromagnetically induced absorption (EIA), and that it is possible to mutually convert from electromagnetically induced transparency to EIA by adjusting the coherent control of the control optical field and the SDLOP. In the nonlinear range, it is shown that by taking into account the influence of the SDLOP, the cross-Kerr nonlinearity of the probe and signal optical fields can be tremendously enhanced. Simultaneously, we obtain the presence of the suppression of self-Kerr optical absorption of the probe field. These characteristics are advantageous to enable the realization of efficient photon-photon entanglement, and generate conditional nonlinear phase shifts of order π. Thereafter, we present a feasible scheme to carry out a two-qubit optical controlled-phase gate by encoding the polarization state of the probe and signal optical fields. Utilizing the linear optics components, we can discriminate the maximal polarization-entangled state of such a two-qubit system. This proposal is potentially applicable to facilitate the realization of solid states mediated all-optical quantum computation and information processing.

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    M.A. Nielsen, I. Chuang, L.K. Grover, Quantum Computation and Quantum Information (Cambridge University Press, 2002) Google Scholar
  2. 2.
    R.W. Boyd, Nonlinear Optics (Academic Press, San Diego, 2003) Google Scholar
  3. 3.
    M. Fleischhauer, A. Imamoǧlu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005) ADSCrossRefGoogle Scholar
  4. 4.
    S.E. Harris, Phys. Today 50, 36 (1997) CrossRefGoogle Scholar
  5. 5.
    Y. Wu, X.X. Yang, Phys. Rev. A 71, 053806 (2005) ADSCrossRefGoogle Scholar
  6. 6.
    H. Schmidt, A. Imamoǧlu, Opt. Lett. 21, 1936 (1996) ADSCrossRefGoogle Scholar
  7. 7.
    H. Kang, Y. Zhu, Phys. Rev. Lett. 91, 093601 (2003) ADSCrossRefGoogle Scholar
  8. 8.
    Y.Q. Li, M. Xiao, Opt. Lett. 21, 1064 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    G.P. Agrawal, Phys. Rev. Lett. 59, 880 (1987) ADSCrossRefGoogle Scholar
  10. 10.
    Y. Wu, L. Deng, Phys. Rev. Lett. 93, 143904 (2004) ADSCrossRefGoogle Scholar
  11. 11.
    L. Deng, M.G. Payne, G. Huang, E.W. Hagley, Phys. Rev. E 72, 055601 (2005) ADSCrossRefGoogle Scholar
  12. 12.
    H. Wang, D. Goorskey, M. Xiao, Phys. Rev. Lett. 87, 073601 (2001) ADSCrossRefGoogle Scholar
  13. 13.
    H.-Y. Lo, Y.-C. Chen, P.-C. Su, H.-C. Chen, J.-X. Chen, Y.-C. Chen, I.A. Yu, Y.-F. Chen, Phys. Rev. A 83, 041804(R) (2011) ADSCrossRefGoogle Scholar
  14. 14.
    G.F. Sinclair, N. Korolkova, Phys. Rev. A 77, 033843 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    X.J. Fan, Z.B. Liu, Y. Liang, K.N. Jia, D.M. Tong, Phys. Rev. A 83, 043805 (2011) ADSCrossRefGoogle Scholar
  16. 16.
    W.M. Liu, B. Wu, Q. Niu, Phys. Rev. Lett. 84, 2294 (2000) ADSCrossRefGoogle Scholar
  17. 17.
    Y.F. Xiao, X.B. Zou, Z.F. Han, G.C. Guo, Phys. Rev. A 74, 044303 (2006) and references therein ADSCrossRefGoogle Scholar
  18. 18.
    A. Lezama, S. Barreiro, A.M. Akulshin, Phys. Rev. A 59, 4732 (1999) ADSCrossRefGoogle Scholar
  19. 19.
    C. Goren, A.D. Wilson-Gordon, M. Rosenbluh, H. Friedmann, Phys. Rev. A 69, 053818 (2004) ADSCrossRefGoogle Scholar
  20. 20.
    C.-L. Cui, J.-K. Jia, J.-W. Gao, Y. Xue, G. Wang, J.-H. Wu, Phys. Rev. A 76, 033815 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    S.R. Chanu, K. Pandey, V. Natarajan, Europhys. Lett. 98, 44009 (2012) and references therein ADSCrossRefGoogle Scholar
  22. 22.
    C.C. Phillips, E. Paspalakis, G.B. Serapiglia, C. Sirtori, K.L. Vodopyanov, Physica E 7, 166 (2000) ADSCrossRefGoogle Scholar
  23. 23.
    L. Silvestri, F. Bassani, G. Czajkowski, B. Davoudi, Eur. Phys. J. B 27, 89 (2002) ADSGoogle Scholar
  24. 24.
    G.B. Serapiglia, E. Paspalakis, C. Sirtori, K.L. Vodopyanov, C.C. Phillips, Phys. Rev. Lett. 84, 1019 (2000) ADSCrossRefGoogle Scholar
  25. 25.
    X.Q. Luo, D.L. Wang, Z.Q. Zhang, J.W. Ding, W.M. Liu, Phys. Rev. A 84, 033803 (2011) ADSCrossRefGoogle Scholar
  26. 26.
    J.H. Wu, J.Y. Gao, J.H. Xu, L. Silvestri, M. Artoni, G.C. La Rocca, F. Bassani, Phys. Rev. Lett. 95, 057401 (2005) ADSCrossRefGoogle Scholar
  27. 27.
    W.X. Yang, J.M. Hou, R.K. Lee, Phys. Rev. A 77, 033838 (2008) ADSCrossRefGoogle Scholar
  28. 28.
    C.J. Zhu, G.X. Huang, Phys. Rev. B 80, 235408 (2009) ADSCrossRefGoogle Scholar
  29. 29.
    D.E. Nikonov, A. Imamoǧlu, M.O. Scully, Phys. Rev. B 59, 12212 (1999) ADSCrossRefGoogle Scholar
  30. 30.
    H. Sun, Y.P. Niu, R.X. Li, S.Q. Jin, S.Q. Gong, Opt. Lett. 32, 2475 (2007) ADSCrossRefGoogle Scholar
  31. 31.
    H. Choi, V.-M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capasso, F.X. Kärtner, T.B. Norris, Nat. Photon. 4, 706 (2010) ADSCrossRefGoogle Scholar
  32. 32.
    H. Schmidt, K.L. Campman, A.C. Gossard, A. Imamoǧlu, Appl. Phys. Lett. 70, 3455 (1997) ADSCrossRefGoogle Scholar
  33. 33.
    C.J. Zhu, G.X. Huang, Opt. Express 19, 1963 (2011) ADSCrossRefGoogle Scholar
  34. 34.
    H. Sun, S.L. Fan, X.L. Feng, C.F. Wu, S.Q. Gong, G.X. Huang, C.H. Oh, Opt. Express 20, 8485 (2012) ADSCrossRefGoogle Scholar
  35. 35.
    X.Y. Hao, J.H. Li, X.Y. Lü, X. Yang, Eur. Phys. J. D 56, 239 (2010) ADSCrossRefGoogle Scholar
  36. 36.
    A. Joshi, M. Xiao, Appl. Phys. B 79, 65 (2004) ADSCrossRefGoogle Scholar
  37. 37.
    X.Y. Lü, L.L. Zheng, C.L. Ding, X. Yang, Eur. Phys. J. D 63, 489 (2011) ADSCrossRefGoogle Scholar
  38. 38.
    H. Sun, S.L. Fan, H.J. Zhang, S.Q. Gong, Phys. Rev. B 87, 235310 (2013) ADSCrossRefGoogle Scholar
  39. 39.
    J. Faist, F. Capasso, C. Sirtori, K.W. West, L.N. Pfeiffer, Nature 390, 589 (1997) and references therein ADSCrossRefGoogle Scholar
  40. 40.
    W. Kuehn, K. Reimann, M. Woerner, T. Elsaesser, R. Hey, U. Schade, Phys. Rev. Lett. 107, 067401 (2011) ADSCrossRefGoogle Scholar
  41. 41.
    D.E. Nikonov, A. Imamoǧlu, L.V. Butov, H. Schmidt, Phys. Rev. Lett. 79, 4633 (1997) ADSCrossRefGoogle Scholar
  42. 42.
    M.D. Lukin, A. Imamoǧlu, Phys. Rev. Lett. 84, 1419 (2000) ADSCrossRefGoogle Scholar
  43. 43.
    V. Coffman, J. Kundu, W.K. Wootters, Phys. Rev. A 61, 052306 (2000) ADSCrossRefGoogle Scholar
  44. 44.
    H.C. Liu, F. Capasso, Intersubband Transitions in Quantum Wells: Physics and Device Applications (Academic, New York, 2000) Google Scholar
  45. 45.
    A. Neogi, H. Yoshida, T. Mozume, O. Wada, Opt. Commun. 159, 225 (1999) and references therein ADSCrossRefGoogle Scholar
  46. 46.
    J.W. Pan, A. Zeilinger, Phys. Rev. A 57, 2208 (1998) ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    D. Vitali, M. Fortunato, P. Tombesi, Phys. Rev. Lett. 85, 445 (2000) ADSCrossRefGoogle Scholar
  48. 48.
    E. Paspalakis, M. Tsaousidou, A.F. Terzis, Phys. Rev. B 73, 125344 (2006)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Xiao-Qing Luo
    • 1
    • 2
  • Deng-Long Wang
    • 1
    Email author
  • Yan-Chao She
    • 1
  • Heng Fan
    • 2
  • Wu-Ming Liu
    • 2
  1. 1.Department of PhysicsXiangtan UniversityXiangtanP.R. China
  2. 2.Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of SciencesBeijingP.R. China

Personalised recommendations