Accurate calculations on the 12 electronic states and 23 Ω states of the SiBr+ cation: potential energy curves, spectroscopic parameters and spin-orbit coupling

  • De-Heng ShiEmail author
  • Qionglan Liu
  • Wei Yu
  • Jinfeng Sun
  • Zunlue Zhu
Regular Article


The potential energy curves (PECs) of 23 Ω states generated from the 12 electronic states (X1 Σ +, 21 Σ +, 11 Σ , 11 Π, 21 Π, 11 Δ, 13 Σ +, 23 Σ +, 13 Σ , a3 Π, 23 Π and 13 Δ) are studied for the first time. All the states correlate to the first dissociation channel of the SiBr+ cation. Of these electronic states, the 23 Σ + is the repulsive one without the spin-orbit coupling, whereas it becomes the bound one with the spin-orbit coupling added. On the one hand, without the spin-orbit coupling, the 11 Π, 21 Π and 23 Π are the rather weakly bound states, and only the 11 Π state possesses the double well; on the other hand, with the spin-orbit coupling included, the a3 Π and 11 Π states possess the double well, and the 13 Σ + and 13 Σ are the inverted states. The PECs are calculated by the CASSCF method, which is followed by the internally contracted MRCI approach with the Davidson modification. Scalar relativistic correction is calculated by the third-order Douglas-Kroll Hamiltonian approximation with a cc-pVTZ-DK basis set. Core-valence correlation correction is included with a cc-pCVTZ basis set. The spin-orbit coupling is accounted for by the state interaction method with the Breit-Pauli Hamiltonian using the all-electron aug-cc-pCVTZ basis set. All the PECs are extrapolated to the complete basis set limit. The variation with internuclear separation of the spin-orbit coupling constant is discussed in brief. The spectroscopic parameters are evaluated for the 11 bound electronic states and the 23 bound Ω states, and are compared with available measurements. Excellent agreement has been found between the present results and the experimental data. It demonstrates that the spectroscopic parameters reported here can be expected to be reliably predicted ones. The Franck-Condon factors and radiative lifetimes of the transitions from the a3 Π 0 + and a3 Π 1 states to the X1 Σ + 0+ state are calculated for several low vibrational levels, and some brief discussion has been made.


Molecular Physics and Chemical Physics 


  1. 1.
    W.Y. Fan, Z. Liu, P.B. Davies, J. Mol. Spectrosc. 191, 98 (1998) and references thereinADSCrossRefGoogle Scholar
  2. 2.
    K. Beloy, A. Borschevsky, P. Schwerdtfeger, V.V. Flambaum, Phys. Rev. 82, 022106 (2010) and references thereinADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    D.H. Shi, W. Xing, J.F. Sun, Z.L. Zhu, Y.F. Liu, Int. J. Quantum Chem. 112, 1323 (2012) and references thereinCrossRefGoogle Scholar
  4. 4.
    L.A. Kuznetsova, E. Kuzmenko, Y.Y. Kuzyakov, Opt. Spectrosc. 24, 434 (1968)ADSGoogle Scholar
  5. 5.
    M. Tsujik, K. Shinoharsa, S. Nishitanti, T. Mizuguchai, Y. Nishimura, Can. J. Phys. 62, 353 (1984)ADSCrossRefGoogle Scholar
  6. 6.
    M. Ishiguro, T. Okabayashi, M. Tanimoto, J. Mol. Struct. 352-353, 317 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    A. Berning, M. Schweizer, H.-J. Werner, P.J. Knowles, P. Palmieri, Mol. Phys. 98, 1823 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    H.-J. Werner, P.J. Knowles, J. Chem. Phys. 89, 5803 (1988)ADSCrossRefGoogle Scholar
  9. 9.
    P.J. Knowles, H.-J. Werner, Chem. Phys. Lett. 145, 514 (1988)ADSCrossRefGoogle Scholar
  10. 10.
    S.R. Langhoff, E.R. Davidson, Int. J. Quantum Chem. 8, 61 (1974)CrossRefGoogle Scholar
  11. 11.
    A. Richartz, R.J. Buenker, S.D. Peyerimhoff, Chem. Phys. 28, 305 (1978)ADSCrossRefGoogle Scholar
  12. 12.
    C.E. Moore, in Atomic Energy Levels (Nat. Stand. Ref. Data Ser., Nat. Bur. Stand., Washington, 1971), Vol.1, and references thereinGoogle Scholar
  13. 13.
    H.A. Bethe, E. Salpeter, Quantum Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1977)Google Scholar
  14. 14.
    H.-J. Werner, P.J. Knowles, R. Lindh, F.R. Manby, M. Schütz, P. Celani, T. Korona, A. Mitrushenkov, G. Rauhut, T.B. Adler, R.D. Amos, A. Bernhardsson, A. Berning, D.L. Cooper, M.J.O. Deegan, A.J. Dobbyn, F. Eckert, E. Goll, C. Hampel, G. Hetzer, T. Hrenar, G. Knizia, C. Köppl, Y. Liu, A.W. Lloyd, R.A. Mata, A.J. May, S.J. McNicholas, W. Meyer, M.E. Mura, A. Nicklass, P. Palmieri, K. Pflüger, R. Pitzer, M. Reiher, U. Schumann, H. Stoll, A.J. Stone, R. Tarroni, T. Thorsteinsson, M. Wang, A. Wolf, MOLPRO 2010.1, a package of ab initio programs Google Scholar
  15. 15.
    D.E. Woon, T.H. Dunning, J. Chem. Phys. 98, 1358 (1993)ADSCrossRefGoogle Scholar
  16. 16.
    A.K. Wilson, D.E. Woon, K.A. Peterson, T.H. Dunning, J. Chem. Phys. 110, 7667 (1999)ADSCrossRefGoogle Scholar
  17. 17.
    D.E. Woon, T.H. Dunning, J. Chem. Phys. 103, 4572 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    N.J. DeYonker, K.A. Peterson, A.K. Wilson, J. Phys. Chem. A 111, 11383 (2007)CrossRefGoogle Scholar
  19. 19.
    W.A. de Jong, R.J. Harrison, D.A. Dixon, J. Chem. Phys. 114, 48 (2001)ADSCrossRefGoogle Scholar
  20. 20.
    T. Müller, NIC Series 31, 19 (2006) and references thereinGoogle Scholar
  21. 21.
    J.L.M.Q. González, D. Thompson, Comput. Phys. 11, 514 (1997)CrossRefGoogle Scholar
  22. 22.
    D.H. Shi, X.H. Niu, J.F. Sun, Z.L. Zhu, Mol. Phys. Doi: 10.1080/00268976.2013.858190 (2013)Google Scholar
  23. 23.
    H. Okabe, Photochemistry of Small Molecules (Wiley Interscience, New York, 1978)Google Scholar
  24. 24.
    R.J. Le Roy, LEVEL 75: A computer program for solving the radial Schrödinger equation for bound and quasibound levels (University of Waterloo, Waterloo, ON, Canada, 2001), University of Waterloo Chemical Physics Research Report No. CP-642R3Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • De-Heng Shi
    • 1
    Email author
  • Qionglan Liu
    • 1
  • Wei Yu
    • 1
  • Jinfeng Sun
    • 1
  • Zunlue Zhu
    • 1
  1. 1.College of Physics and Electronic EngineeringHenan Normal UniversityXinxiangP.R. China

Personalised recommendations