Advertisement

Guided and focused slow atomic beam from a 2 dimensional magneto optical trap

  • Yoann BruneauEmail author
  • Guyve Khalili
  • Pierre Pillet
  • Daniel Comparat
Regular Article

Abstract

We report experimental results which demonstrate how a single laser can be used to both accelerate and guide caesium atoms initially trapped in a two dimensional magneto-optical trap (2D-MOT). The atomic beam size and velocity can be modified using both the laser power and detuning as parameters. In particular, using a 750 mW laser detuned 10 GHz from resonance, we demonstrate that it is possible to focus an atomic beam to a size of 0.4 mm as far as 60 cm from the output of the 2D-MOT with a flux on the order of 3 × 109 atoms/s.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    J.E. Bjorkholm, R.H. Freeman, A. Ashkin, D.B. Pearson, Phys. Rev. Lett. 41, 1361 (1978) ADSCrossRefGoogle Scholar
  2. 2.
    J. Yu, J. Djemaa, P. Nosbaum, P. Pillet, Opt. Commun. 112, 136 (1994) ADSCrossRefGoogle Scholar
  3. 3.
    W. Phillips, H. Metcalf, Phys. Rev. Lett. 48, 596 (1982) ADSCrossRefGoogle Scholar
  4. 4.
    H.J. Metcalf, P. van der Straten, Laser Cooling and Trapping (Springer, 1999) Google Scholar
  5. 5.
    J.J. Arlt, O. Maragò, S. Webster, S. Hopkins, C.J. Foot, Opt. Commun. 157, 303 (1998) ADSCrossRefGoogle Scholar
  6. 6.
    J.M. Kohel, J. Ramirez-Serrano, R.J. Thompson, L. Maleki, J.L. Bliss, K.G. Libbrecht, J. Am. Soc. B 20, 1161 (2003) ADSCrossRefGoogle Scholar
  7. 7.
    K.H. Kim, K.I. Lee, H.R. Noh, W. Jhe, N. Kwon, M. Ohtsu, Phys. Rev. A 64, 3402 (2001) ADSGoogle Scholar
  8. 8.
    Z.T. Lu, K.L. Corwin, M.J. Renn, M.H. Anderson, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 77, 3331 (1996) ADSCrossRefGoogle Scholar
  9. 9.
    P. Cren, C.F. Roos, A. Aclan, J. Dalibard, D. Guéry-Odelin, Eur. Phys. J. D 20, 107 (2002) ADSCrossRefGoogle Scholar
  10. 10.
    B.K. Teo, T. Cubel, G. Raithel, Opt. Commun. 212, 307 (2002) ADSCrossRefGoogle Scholar
  11. 11.
    B. Knuffman, A.V. Steele, J.J. McClelland, J. Appl. Phys. 114, 044303 (2013) ADSCrossRefGoogle Scholar
  12. 12.
    Z.T. Lu, K.L. Corwin, M.J. Renn, M.H. Anderson, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 77, 3331 (1996) ADSCrossRefGoogle Scholar
  13. 13.
    K. Dieckmann, R.J.C. Spreeuw, M. Weidemüller, J.T.M. Walraven, Phys. Rev. A 58, 3891 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    J. Schoser, A. Batär, R. Löw, V. Schweikhard, A. Grabowski, Y.B. Ovchinnikov, T. Pfau, Phys. Rev. A 66, 023410 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    R.S. Conroy, Y. Xiao, M. Vengalattore, W. Rooijakkers, M. Prentiss, Opt. Commun. 226, 259 (2003) ADSCrossRefGoogle Scholar
  16. 16.
    T. Lahaye, J.M. Vogels, K.J. Ganter, Z. Wang, J. Dalibard, D. Gury-Odelin, Phys. Rev. Lett. 93, 093003 (2004) ADSCrossRefGoogle Scholar
  17. 17.
    J. Ramirez-Serrano, N. Yu, J.M. Kohel, J.R. Kellogg, L. Maleki, Opt. Lett. 31, 682 (2006) ADSCrossRefGoogle Scholar
  18. 18.
    J. Catani, P. Maioli, L. De Sarlo, F. Minardi, M. Inguscio, Phys. Rev. A 73, 033415 (2006) ADSCrossRefGoogle Scholar
  19. 19.
    S. Götz, B. Höltkemeier, C.S. Hofmann, D. Litsch, B.D. DePaola, M. Weidemüller, Rev. Sci. Instrum. 83, 073112 (2012) ADSCrossRefGoogle Scholar
  20. 20.
    N. Castagna, J. Guéna, M.D. Plimmer, P. Thomann, Eur. Phys. J. Appl. Phys. 34, 21 (2006) ADSCrossRefGoogle Scholar
  21. 21.
    T.G. Tiecke, S.D. Gensemer, A. Ludewig, J.T.M. Walraven, Phys. Rev. A 80, 013409 (2009) ADSCrossRefGoogle Scholar
  22. 22.
    X.-L. Wang, B. Cheng, B. Wu, Z.-Y. Wang, Q. Lin, Chin. Phys. Lett. 28, 053701 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Park, J. Noh, J. Munn, Opt. Commun. 285, 3950 (2012) ADSCrossRefGoogle Scholar
  24. 24.
    J.R. Kellogg, D. Schlippert, J.M. Kohel, R.J. Thompson, D.C. Aveline, N. Yu, Appl. Phys. B 109, 61 (2012) ADSCrossRefGoogle Scholar
  25. 25.
    S.P. Ram, S.K. Tiwari, S.R. Mishra, H.S. Rawat, Rev. Sci. Instrum. 84, 073102 (2013) ADSCrossRefGoogle Scholar
  26. 26.
    S. Dorscher, A. Thobe, B. Hundt, A. Kochanke, R. Le Targat, P. Windpassinger, C. Becker, K. Sengstock, Rev. Sci. Instrum. 84, 043109 (2013) ADSCrossRefGoogle Scholar
  27. 27.
    S. Zhang, J.F. Chen, C. Liu, S. Zhou, M.M.T. Loy, G.K.L. Wong, S. Du, Rev. Sci. Instrum. 83, 073102 (2012) ADSCrossRefGoogle Scholar
  28. 28.
    L. Kime, A. Fioretti, Y. Bruneau, N. Porfido, F. Fuso, M. Viteau, G. Khalili, N. Šantić, A. Gloter, B. Rasser, P. Sudraud, P. Pillet, D. Comparat, Phys. Rev. A 11, 11 (2013) Google Scholar
  29. 29.
    E. Dimova, O. Morizot, G. Stern, C.L. Garrido Alzar, A. Fioretti, V. Lorent, D. Comparat, H. Perrin, P. Pillet, Eur. Phys. J. D 42, 299 (2007) ADSCrossRefGoogle Scholar
  30. 30.
    Patrick Cheinet, Ph.D. thesis, 2006 Google Scholar
  31. 31.
    R. Grimm, M. Weidemüller, Y.B. Ovchinnikov, Adv. At. Mol. Opt. Phys. 42, 95 (2000) ADSCrossRefGoogle Scholar
  32. 32.
    V. Carrat, C. Cabrera-Guitierez, M. Jacquey, J.W. Tabosa, B. Viaris de Lesegno, L. Pruvost, accepted in Opt. Lett., arXiv:1304.7243v1 Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Yoann Bruneau
    • 1
    Email author
  • Guyve Khalili
    • 1
  • Pierre Pillet
    • 1
  • Daniel Comparat
    • 1
  1. 1.Laboratoire Aimé Cotton, CNRS, Université Paris-SudOrsayFrance

Personalised recommendations