AEgIS experiment: Towards antihydrogen beam production for antimatter gravity measurements

  • Sebastiano Mariazzi
  • Stefano Aghion
  • Claude Amsler
  • Akitaka Ariga
  • Tomoko Ariga
  • Alexandre S. Belov
  • Germano Bonomi
  • Philippe Bräunig
  • Roberto S. Brusa
  • Johan Bremer
  • Louis Cabaret
  • Carlo Canali
  • Ruggero Caravita
  • Fabrizio Castelli
  • Giovanni Cerchiari
  • Simone Cialdi
  • Daniel Comparat
  • Giovanni Consolati
  • Luca Dassa
  • Jan Hendrik Derking
  • Sergio Di Domizio
  • Lea Di Noto
  • Michael Doser
  • Alexey Dudarev
  • Antonio Ereditato
  • Rafael Ferragut
  • Andrea Fontana
  • Pablo Genova
  • Marco Giammarchi
  • Angela Gligorova
  • Sergei N. Gninenko
  • Stephen D. Hogan
  • Stefan Haider
  • Elena Jordan
  • Lars V. Jørgensen
  • Thomas Kaltenbacher
  • Jiro Kawada
  • Alban Kellerbauer
  • Mitsuhiro Kimura
  • Andreas Knecht
  • Daniel Krasnický
  • Vittorio Lagomarsino
  • Sebastian Lehner
  • Chloe Malbrunot
  • Viktor A. Matveev
  • Frederic Merkt
  • Fabio Moia
  • Giancarlo Nebbia
  • Patrick Nédélec
  • Markus K. Oberthaler
  • Nicola Pacifico
  • Vojtech Petráček
  • Ciro Pistillo
  • Francesco Prelz
  • Marco Prevedelli
  • Christian Regenfus
  • Cristina Riccardi
  • Ole Røhne
  • Alberto Rotondi
  • Heidi Sandaker
  • Paola Scampoli
  • James Storey
  • Martin A. Subieta Vasquez
  • Michal Špaček
  • Gemma Testera
  • Renzo Vaccarone
  • Fabio Villa
  • Eberhard Widmann
  • Sandra Zavatarelli
  • Johann Zmeskal
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

AEgIS (Antimatter Experiment: Gravity, Interferometry, Spectroscopy) is an experiment that aims to perform the first direct measurement of the gravitational acceleration g of antihydrogen in the Earth’s field. A cold antihydrogen beam will be produced by charge exchange reaction between cold antiprotons and positronium excited in Rydberg states. Rydberg positronium (with quantum number n between 20 and 30) will be produced by a two steps laser excitation. The antihydrogen beam, after being accelerated by Stark effect, will fly through the gratings of a moiré deflectometer. The deflection of the horizontal beam due to its free fall will be measured by a position sensitive detector. It is estimated that the detection of about 103 antihydrogen atoms is required to determine the gravitational acceleration with a precision of 1%. In this report an overview of the AEgIS experiment is presented and its current status is described. Details on the production of slow positronium and its excitation with lasers are discussed.

References

  1. 1.
    E.G. Adelberger, J.H. Gundlach, B.R. Heckel, S. Hoedl, S. Schlamminger, Prog. Part. Nucl. Phys. 62, 102 (2009) ADSCrossRefGoogle Scholar
  2. 2.
    M. Amoretti et al. (ATHENA collaboration), Nature 419, 456 (2002) ADSCrossRefGoogle Scholar
  3. 3.
    G. Gabrielse et al. (ATRAP collaboration), Phys. Rev. Lett. 89, 213401 (2002) ADSCrossRefGoogle Scholar
  4. 4.
    A. Kellerbauer et al., Nucl. Instrum. Methods Phys. Res. B 266, 351 (2008) ADSCrossRefGoogle Scholar
  5. 5.
    M.K. Oberthaler, S. Bernet, E.M. Rasel, J. Schmiedmayer, A. Zeilinger, Phys. Rev. A 54, 3165 (1996) ADSCrossRefGoogle Scholar
  6. 6.
    R.G. Greaves, C.M. Surko, Phys. Rev. Lett. 85, 1883 (2000) ADSCrossRefGoogle Scholar
  7. 7.
    D.B. Cassidy, T.H. Hisakado, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. Lett. 108, 043401 (2012) ADSCrossRefGoogle Scholar
  8. 8.
    M. Charlton, Phys. Lett. A 143, 143 (1990) ADSCrossRefGoogle Scholar
  9. 9.
    E. Vliegen, F. Merkt, Phys. Rev. Lett. 97, 033002 (2006) ADSCrossRefGoogle Scholar
  10. 10.
    J.R. Danielson, T.R. Weber, C.M. Surko, Phys. Plasmas 13, 123502 (2006) ADSCrossRefGoogle Scholar
  11. 11.
    S. Mariazzi, P. Bettotti, S. Larcheri, L. Toniutti, R.S. Brusa, Phys. Rev. B 81, 235418 (2010) ADSCrossRefGoogle Scholar
  12. 12.
    S. Mariazzi, P. Bettotti, R.S. Brusa, Phys. Rev. Lett. 104, 243401 (2010) ADSCrossRefGoogle Scholar
  13. 13.
    S. Cialdi, I. Boscolo, F. Castelli, F. Villa, G. Ferrari, M.G. Giammarchi, Nucl. Instrum. Methods Phys. Res. B 269, 1527 (2011) ADSCrossRefGoogle Scholar
  14. 14.
    S. Aghion et al., JINST 8, P08013 (2013) ADSCrossRefGoogle Scholar
  15. 15.
    D. Fabris et al., Nucl. Phys. A 834, 751 (2010) ADSCrossRefGoogle Scholar
  16. 16.
    S. Mariazzi, A. Salemi, R.S. Brusa, Phys. Rev. B 78, 085428 (2008) ADSCrossRefGoogle Scholar
  17. 17.
    D.B. Cassidy, P. Crivelli, T.H. Hisakado, L. Liszkay, V.E. Meligne, P. Perez, H.W.K. Tom, A.P. Mills Jr., Phys. Rev. A 81, 012715 (2010) ADSCrossRefGoogle Scholar
  18. 18.
    L. Penasa, L. Di Noto, M. Bettonte, S. Mariazzi, G. Nebbia, R.S. Brusa, J. Phys.: Conf. Ser., in press Google Scholar
  19. 19.
    D.B. Cassidy, A.P. Mills Jr., Nucl. Instrum. Methods Phys. Res. B 580, 1338 (2007) CrossRefGoogle Scholar
  20. 20.
    F. Castelli, Eur. Phys. J. Special Topics 203, 137 (2012) ADSCrossRefGoogle Scholar
  21. 21.
    T. Kumita, T. Hirose, M. Irako, K. Kadoya, B. Matsumoto, K. Wada, N.N. Mondal, H. Yabu, K. Kobayashi, M. Kajita, Nucl. Instrum. Methods Phys. Res. B 192, 171 (2002) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Sebastiano Mariazzi
    • 1
  • Stefano Aghion
    • 2
    • 3
  • Claude Amsler
    • 4
  • Akitaka Ariga
    • 4
  • Tomoko Ariga
    • 4
  • Alexandre S. Belov
    • 5
  • Germano Bonomi
    • 6
    • 7
  • Philippe Bräunig
    • 8
  • Roberto S. Brusa
    • 9
  • Johan Bremer
    • 10
  • Louis Cabaret
    • 11
  • Carlo Canali
    • 12
  • Ruggero Caravita
    • 2
    • 13
  • Fabrizio Castelli
    • 13
  • Giovanni Cerchiari
    • 3
    • 13
  • Simone Cialdi
    • 13
  • Daniel Comparat
    • 11
  • Giovanni Consolati
    • 3
    • 14
  • Luca Dassa
    • 6
  • Jan Hendrik Derking
    • 10
  • Sergio Di Domizio
    • 15
  • Lea Di Noto
    • 9
  • Michael Doser
    • 10
  • Alexey Dudarev
    • 10
  • Antonio Ereditato
    • 4
  • Rafael Ferragut
    • 2
    • 3
  • Andrea Fontana
    • 7
  • Pablo Genova
    • 7
  • Marco Giammarchi
    • 3
  • Angela Gligorova
    • 16
  • Sergei N. Gninenko
    • 5
  • Stephen D. Hogan
    • 17
  • Stefan Haider
    • 10
  • Elena Jordan
    • 18
  • Lars V. Jørgensen
    • 10
  • Thomas Kaltenbacher
    • 10
  • Jiro Kawada
    • 4
  • Alban Kellerbauer
    • 18
  • Mitsuhiro Kimura
    • 4
  • Andreas Knecht
    • 10
  • Daniel Krasnický
    • 15
    • 19
  • Vittorio Lagomarsino
    • 19
  • Sebastian Lehner
    • 1
  • Chloe Malbrunot
    • 1
    • 10
  • Viktor A. Matveev
    • 5
    • 20
  • Frederic Merkt
    • 21
  • Fabio Moia
    • 2
    • 3
  • Giancarlo Nebbia
    • 22
  • Patrick Nédélec
    • 23
  • Markus K. Oberthaler
    • 8
  • Nicola Pacifico
    • 16
  • Vojtech Petráček
    • 24
  • Ciro Pistillo
    • 4
  • Francesco Prelz
    • 3
  • Marco Prevedelli
    • 25
  • Christian Regenfus
    • 12
  • Cristina Riccardi
    • 7
    • 26
  • Ole Røhne
    • 27
  • Alberto Rotondi
    • 7
    • 26
  • Heidi Sandaker
    • 16
  • Paola Scampoli
    • 4
    • 28
  • James Storey
    • 4
  • Martin A. Subieta Vasquez
    • 6
    • 7
  • Michal Špaček
    • 24
  • Gemma Testera
    • 15
  • Renzo Vaccarone
    • 15
  • Fabio Villa
    • 13
  • Eberhard Widmann
    • 1
  • Sandra Zavatarelli
    • 15
  • Johann Zmeskal
    • 1
  1. 1.Stefan-Meyer-Institut für subatomare PhysikViennaAustria
  2. 2.Politecnico di Milano, LNESS and Dept of PhysicsComoItaly
  3. 3.Istituto Nazionale di Fisica Nucleare, Sez. di MilanoMilanoItaly
  4. 4.Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics, University of BernBernSwitzerland
  5. 5.Institute for Nuclear Research of the Russian Academy of SciencesMoscowRussia
  6. 6.University of Brescia, Dept of Mech. and Indust. EngineeringBresciaItaly
  7. 7.Istituto Nazionale di Fisica Nucleare, Sez. di PaviaPaviaItaly
  8. 8.University of Heidelberg, Kirchhoff Institute for PhysicsHeidelbergGermany
  9. 9.Department of PhysicsUniversity of Trento and INFN TIFPAPovo, TrentoItaly
  10. 10.European Organisation for Nuclear Research, Physics DepartmentGenève 23Switzerland
  11. 11.Laboratoire Aimé Cotton, CNRS, Université Paris Sud, ENS CachanOrsay CedexFrance
  12. 12.University of Zurich, Physics InstituteZürichSwitzerland
  13. 13.University of Milano, Dept of PhysicsMilanoItaly
  14. 14.Politecnico di Milano, Dept of Aerospace Sci. and Tech.MilanoItaly
  15. 15.Istituto Nazionale di Fisica Nucleare, Sez. di GenovaGenovaItaly
  16. 16.University of Bergen, Institute of Physics and TechnologyBergenNorway
  17. 17.University College London, Dept of Physics and AstronomyLondonUK
  18. 18.Max Planck Institute for Nuclear PhysicsHeidelbergGermany
  19. 19.University of Genoa, Dept of PhysicsGenovaItaly
  20. 20.Joint Institute for Nuclear ResearchDubnaRussia
  21. 21.ETH Zurich, Laboratory for Physical ChemistryZürichSwitzerland
  22. 22.Istituto Nazionale di Fisica Nucleare, Sez. di PadovaPadovaItaly
  23. 23.Claude Bernard University Lyon 1, Institut de Physique Nucléaire de LyonVilleurbanneFrance
  24. 24.Czech Technical University in Prague, FNSPEPraha 1Czech Republic
  25. 25.University of Bologna, Dept of PhysicsBolognaItaly
  26. 26.University of Pavia, Dept of Nuclear and Theoretical PhysicsPaviaItaly
  27. 27.University of Oslo, Dept of PhysicsOsloNorway
  28. 28.University of Napoli Federico II, Department of PhysicsNapoliItaly

Personalised recommendations