Advertisement

Elastic scattering of low-energy electrons by BF3

  • Diego F. Pastega
  • Romarly F. da Costa
  • Marco A. P. Lima
  • Márcio H. F. BettegaEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

We present integral, differential and momentum transfer cross sections for elastic scattering of low-energy electrons by boron trifluoride molecules. The cross sections were obtained with the Schwinger multichannel method implemented with pseudopotentials. The calculations were performed in the static-exchange and in the static-exchange-polarization approximations for energies from 0.1 to 10 eV. Our results indicate that BF3 has a shape resonance in the B 2 symmetry located at around 3.5 eV, in agreement with the experimental measurements of 3.8 eV, 3.54 eV and of 3.6 eV reported by [M. Tronc et al., J. Phys. B 15, L253 (1982)], by [J.A. Tossell et al., Int. J. Quantum Chem. 29, 1117 (1986)] and by [C. Szmytkowski et al., J. Chem. Phys. 121, 1790 (2004)] respectively. We also report a Ramsauer-Townsend minimum at around 0.7 eV, in conformity with the observations of [S.R. Hunter et al., J. Appl. Phys. 65, 1858 (1989); Z. Nikitović et al., Acta Phys. Polon. A 117, 748 (2010)], and [P.X. Hien et al., J. Phys. Soc. Jpn 82, 034301 (2013)]. Our elastic integral cross section is compared with calculated elastic cross sections of [J.A. Tossell et al., Int. J. Quantum Chem. 29, 1117 (1986)] and of [M. Radmilović-Radjenović et al., Publ. Astron. Obs. Belgrade 84, 57 (2008)] and with the experimental total cross section data of [C. Szmytkowski et al., J. Chem. Phys. 121, 1790 (2004)]. Although all these studies reported the presence of the shape resonance, there are some discrepancies in the magnitude and shape among the cross sections.

Keywords

Electron Collision Integral Cross Section Shape Resonance Elastic Cross Section Momentum Transfer Cross Section 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    M.T. Gutiérrez, J. Cárabe, J.J. Gandía, J. Appl. Phys. 71, 6140 (1992)ADSCrossRefGoogle Scholar
  2. 2.
    W.J. Zhang, S. Matsumoto, Chem. Phys. Lett. 330, 243 (2000)ADSCrossRefGoogle Scholar
  3. 3.
    H. Yamamoto, S. Matsumoto, K. Okada, J. Yu, K. Hirakuri, Diamond Relat. Mater. 15, 1357 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    M. Tronc, L. Malegat, R. Azria, Y. Le Coat, J. Phys. B 15, L253 (1982)ADSCrossRefGoogle Scholar
  5. 5.
    J.A. Tossell, J.H. Moore, J.K. Olthoff, Int. J. Quantum Chem. 29, 1117 (1986)CrossRefGoogle Scholar
  6. 6.
    S.R. Hunter, J.G. Carter, L.G. Christophorou, J. Appl. Phys. 65, 1858 (1989)ADSCrossRefGoogle Scholar
  7. 7.
    R.F. da Costa, L.G. Ferreira, M.A.P. Lima, M.H.F. Bettega, J. Chem. Phys. 118, 75 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    C. Szmytkowski, M. Piotrowicz, A. Domaracka, L. Klosowski, E. Ptasinska-Denga, G. Kasperski, J. Chem. Phys. 121, 1790 (2004)ADSCrossRefGoogle Scholar
  9. 9.
    M. Radmilović-Radjenović, H.N. Varambhia, M. Vranić, J. Tennyson, Z.Lj. Petrović, Publ. Astron. Obs. Belgrade 84, 57 (2008)ADSGoogle Scholar
  10. 10.
    M. Vinodkumar, K. Korot, C. Limbachiya, B.K. Antony, J. Phys. B 41, 245202 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    P.X. Hien, B.-H. Jeon, D.A. Tuan, J. Phys. Soc. Jpn 82, 034301 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    K. Takatsuka, V. McKoy, Phys. Rev. A 24, 2473 (1981)ADSCrossRefMathSciNetGoogle Scholar
  13. 13.
    K. Takatsuka, V. McKoy, Phys. Rev. A 30, 1734 (1984)ADSCrossRefGoogle Scholar
  14. 14.
    M.H.F. Bettega, L.G. Ferreira, M.A.P. Lima, Phys. Rev. A 47, 1111 (1993)ADSCrossRefGoogle Scholar
  15. 15.
    R.F. da Costa, F.J. da Paixão, M.A.P. Lima, J. Phys. B 37, L129 (2004)CrossRefGoogle Scholar
  16. 16.
    R.F. da Costa, F.J. da Paixão, M.A.P. Lima, J. Phys. B 38, 4363 (2005)ADSCrossRefGoogle Scholar
  17. 17.
    W.J. Hunt, W.A. Goddard III, Chem. Phys. Lett. 3, 414 (1969)ADSCrossRefMathSciNetGoogle Scholar
  18. 18.
    CRC Handbook of Chemistry and Physics, 79th edn., edited by D.R. Lide (CRC, Boca Raton, 1998)Google Scholar
  19. 19.
    B.M. Bode, M.S. Gordon, J. Mol. Graph. Mod. 16, 133 (1998)CrossRefGoogle Scholar
  20. 20.
    T.N. Rescigno, D.A. Byrum, W.A. Isaacs, C.W. McCurdy, Phys. Rev. A 60, 2186 (1999)ADSCrossRefGoogle Scholar
  21. 21.
    Ž. Nikitović, O. Šašić, Z. Raspopović, V. Stojanović, S. Radovanov, M. Mozetič, U. Cvelbar, Acta Phys. Polon. A 117, 748 (2010)Google Scholar
  22. 22.
    M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comput. Chem. 14, 1347 (1993)CrossRefGoogle Scholar
  23. 23.
    G. Bachelet, D.R. Hamann, M. Schlüter, Phys. Rev. B 46, 4199 (1982)ADSCrossRefGoogle Scholar
  24. 24.
    T.H. Dunning Jr., J. Chem. Phys. 53, 2823 (1970)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Diego F. Pastega
    • 1
  • Romarly F. da Costa
    • 2
  • Marco A. P. Lima
    • 3
  • Márcio H. F. Bettega
    • 1
    Email author
  1. 1.Departamento de FísicaUniversidade Federal do ParanáCuritiba, ParanáBrazil
  2. 2.Centro de Ciências Naturais e HumanasUniversidade Federal do ABCSanto André, São PauloBrazil
  3. 3.Instituto de Física “Gleb Wataghin”Universidade Estadual de CampinasCampinas, São PauloBrazil

Personalised recommendations