Advertisement

Control of dissipation of energy via reservoirs of coherent states

  • Filippo GiraldiEmail author
  • Francesco Petruccione
Regular Article

Abstract

The low frequency profile of the initial distribution of coherent states of a bosonic environment may control and hinder the dissipation of energy and model the dynamics of a strongly coupled quantum oscillator. The energy of the main oscillator is asymptotically stabilized to its initial value with damped oscillations enveloped in inverse power law decays in addition to pure inverse power law relaxations. Two limiting regimes appear. Arbitrarily slowly damped oscillations around the initial value show oscillating exchange of energy with the environment. For special initial conditions the inverse power law relaxations prevail over long times on the oscillations and the dissipation of energy may be hindered by slowing down arbitrarily the decays.

Keywords

Quantum Optics 

References

  1. 1.
    U. Weiss, Quantum Dissipative Systems, 3rd edn. (World Scientific, Singapore, 2008)Google Scholar
  2. 2.
    E.B. Davies, Quantum Theory of Open Systems (Academic Press, London, 1976)Google Scholar
  3. 3.
    H.-P. Breuer, F. Petruccione, The Theory of Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  4. 4.
    G.S. Agarwal, Phys. Rev. A 4, 739 (1971)ADSCrossRefGoogle Scholar
  5. 5.
    F. Haake, in Springer Tracts in Modern Physics (Springer, Heidelberg, 1973), Vol. 66Google Scholar
  6. 6.
    A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981)ADSCrossRefGoogle Scholar
  7. 7.
    A.J. Leggett, S. Chakravarty, A.T. Dorsey, M.P.A. Fisher, A. Garg, W. Zwerger, Rev. Mod. Phys. 59, 1 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    A.O. Caldeira, A.J. Leggett, Physica A 121, 587 (1983)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    C. Morais Smith, A.O. Caldeira, Phys. Rev. A 36, 3509 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    A.O. Caldeira, A.J. Leggett, Ann. Phys. 149, 374 (1983)ADSCrossRefGoogle Scholar
  11. 11.
    Dynamics of Dissipation, edited by P. Garbaczewski, R. Olkiewicz, Lecture Notes in Physics (Springer, Berlin, 2003), Vol. 597Google Scholar
  12. 12.
    W.H. Louisell, Quantum Statistical Properties of Radiation (Wiley, New York, 1973)Google Scholar
  13. 13.
    H. Carmichael, An Open Systems Approach to Quantum Optics, Lectures Notes in Physics (Springer-Verlag, Berlin, 1993)Google Scholar
  14. 14.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    D. Giulini, E. Joos, C. Kiefer, J. Kupsch, I.O. Stomatescu, H.D. Zeh, Decoherence and the Appearance of Classical World in Quantum Theory (Springer, Berlin, 1996)Google Scholar
  16. 16.
    G.W. Ford, M. Kac, P. Mazur, J. Math. Phys. 6, 504 (1965)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    F. Haake, R. Reibold, Phys. Rev. A 32, 2462 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    G.W. Ford, M. Kac, J. Stat. Phys. 6, 803 (1987)ADSCrossRefMathSciNetGoogle Scholar
  19. 19.
    H. Grabert, P. Schramm, G.-L. Ingold, Phys. Rep. 168, 115 (1988)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D 45, 2843 (1992)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    J.P. Paz, W.H. Zurek, in Coherent Atomic Matter Waves, Proceedings of the 72nd Les Hounches Summer School, edited by R. Kaiser, C. Westbrook, F. David (Springer-Verlag, Berlin, 1999)Google Scholar
  22. 22.
    G.W. Ford, R.F. O’Connell, Phys. Rev. D 64, 105020 (2001)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    W. Aschbacher, V. Jaksić, Y. Pautrat, C.-A. Pillet, in Open Quantum Systems III: Recent Developements, in volume 1882 of Lecture Notes in Mathematics, edited by S. Attal, A. Joyce, C.-A. Pillet (Springer, Berlin, 2006)Google Scholar
  24. 24.
    R.P. Feynman, F.L. Vernon, Ann. Phys. 24, 118 (1963)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    J.P. Paz, S. Habib, W.H. Zurek, Phys. Rev. D 47, 488 (1993)ADSCrossRefGoogle Scholar
  26. 26.
    W.H. Zurek, S. Habib, J.P. Paz, Phys. Rev. Lett. 70, 1187 (1993)ADSCrossRefGoogle Scholar
  27. 27.
    L.D. Romero, J.P. Paz, Phys. Rev. A 55, 4070 (1997)ADSCrossRefMathSciNetGoogle Scholar
  28. 28.
    J.R. Anglin, J.P. Paz, W.H. Zurek, Phys. Rev. A 55, 4041 (1997)ADSCrossRefGoogle Scholar
  29. 29.
    G.W. Ford, R.F. O’Connel, Phys. Rev. D 64, 105020 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    D.F. Walls, G.J. Milbourn, Phys. Rev. A 31, 2403 (1985)ADSCrossRefGoogle Scholar
  31. 31.
    C.M. Savage, D.F. Walls, Phys. Rev. A 32, 2316 (1985)ADSCrossRefMathSciNetGoogle Scholar
  32. 32.
    S.M. Dutra, Eur. J. Phys. 18, 194 (1997)CrossRefGoogle Scholar
  33. 33.
    S.M. Dutra, J. Mod. Opt. 45, 759 (1998)ADSCrossRefGoogle Scholar
  34. 34.
    F. Intravia, S. Maniscalco, A. Messina, Phys. Rev. A 67, 042108 (2003)ADSCrossRefGoogle Scholar
  35. 35.
    W.H. Zurek, Rev. Mod. Phys. 75, 715 (2003)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  36. 36.
    I. Joichi, Sh. Matsumoto, M. Yoshimura, Phys. Rev. A 57, 798 (1998)ADSCrossRefGoogle Scholar
  37. 37.
    P. Hänggi, P. Talkner, M. Borkovec, Rev. Mod. Phys. 62, 251 (1990)ADSCrossRefGoogle Scholar
  38. 38.
    M. Rosenau da Costa, A.O. Caldeira, S.M. Dutra, H. Westfahl, Phys. Rev. A 61, 022107 (2000)ADSCrossRefGoogle Scholar
  39. 39.
    C. Fleming, N.I. Cummings, C. Anastopoulos, B.L. Hu, J. Phys. A 43, 405304 (2010)CrossRefMathSciNetGoogle Scholar
  40. 40.
    S. Garmon, T. Petrosky, L. Simine, D. Segal, Fortschr. Phys. 61, 261 (2013)CrossRefMathSciNetGoogle Scholar
  41. 41.
    B. Praux, R. Bhatt, P.L. Knight, Phys. Rev. A 41, 6296 (1990)ADSCrossRefGoogle Scholar
  42. 42.
    C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer, Berlin, Heidelberg, New York, 2004)Google Scholar
  43. 43.
    F. Walls, G.J. Milburn, Quantum Optics, 2nd edn. (Springer, 2008)Google Scholar
  44. 44.
    C. Cohen-Tannoudji, J. Dupont-Roc, G. Grynberg, Atom-Photon Interactions/Basics Processes and Applications (John Wiley & Sons, New York, 1992)Google Scholar
  45. 45.
    X. Xiao, Y.-B. Gao, Commun. Theor. Phys. 58, 251 (2012)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    A. Pereverzev, Phys. Rev. E 68, 026111 (2003)ADSCrossRefMathSciNetGoogle Scholar
  47. 47.
    F. Giraldi, F. Petruccione, Open Syst. Inform. Dyn. 20, 1350002 (2013)CrossRefMathSciNetGoogle Scholar
  48. 48.
    F. Giraldi, F. Petruccione, J. Phys. A 46, 015304 (2013)ADSCrossRefMathSciNetGoogle Scholar
  49. 49.
    C.W. Gardiner, P. Zoller, Quantum Noise, 3rd edn. (Springer Berlin Heidelberg, New York, 2004)Google Scholar
  50. 50.
    E.C. Titchmarsh, The Theory of functions, 2nd edn. (Oxford University Press, 1997)Google Scholar
  51. 51.
    E.C. Titchmarsh, Introduction to the Theory of Fourier Integrals, 2nd edn. (Chelsea Pub. Co., New York, 1986)Google Scholar
  52. 52.
    A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Tables of Integral Transforms (McGraw-Hill, New York, 1954), Vol. 2Google Scholar
  53. 53.
    R. Wong, Yu-Qiu Zhao, Proc. R. Soc. Lond. A 458, 625 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  54. 54.
    R. Wong, Asymptotic Approximations of Integrals (Academic Press, Boston, 1989)Google Scholar
  55. 55.
    H.S. Wall, Analytic Theory of Continued Fractions (D. Van Nostrand Company Inc., 1948)Google Scholar
  56. 56.
    E.B. Davies, Commun. Math. Phys. 33, 171 (1973)ADSCrossRefGoogle Scholar
  57. 57.
    E. Braun, Physica A 129, 262 (1985)ADSCrossRefMathSciNetGoogle Scholar
  58. 58.
    P.S. Riseborough, P. Hänggi, U. Weiss, Phys. Rev. A 31, 471 (1985)ADSCrossRefGoogle Scholar
  59. 59.
    S.F. Norelykke, H. Flyvbjerg, Phys. Rev. E 83, 041103 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    R. Martinazzo, M. Nest, P. Saalfrank, G.F. Tantardini, J. Chem. Phys. 125, 194102 (2006)ADSCrossRefGoogle Scholar
  61. 61.
    H.M. Wiseman, J. Vaccaro, Phys. Rev. A 65, 043606 (2002)ADSCrossRefGoogle Scholar
  62. 62.
    I. Burghardt, R. Martinazzo, K.H. Hughes, J. Chem. Phys. 137, 144107 (2012)ADSCrossRefGoogle Scholar
  63. 63.
    R.J. Glauber, Phys. Rev. 131, 2766 (1963)ADSCrossRefMathSciNetGoogle Scholar
  64. 64.
    E.C.G. Sudarshan, Phys. Rev. Lett. 10, 277 (1963)ADSCrossRefzbMATHMathSciNetGoogle Scholar
  65. 65.
    N.-H. Tong, M. Vojta, Phys. Rev. Lett. 97, 016802 (2006)ADSCrossRefGoogle Scholar
  66. 66.
    D. Porras, F. Marquardt, J. von Delft, J.I. Cirac, Phys. Rev. 782, 010101(R) (2008)CrossRefGoogle Scholar
  67. 67.
    J.T. Barreiro, M. Müller, P. Schindler, D. Nigg, T. Monz, M. Chwalla, M. Hennrich, C.F. Roos, P. Zoller, R. Blatt, Nature 470, 486 (2011)ADSCrossRefGoogle Scholar
  68. 68.
    K.W. Murch, U. Vool, D. Zhou, S.J. Weber, S.M. Girvin, I. Siddiqi, Phys. Rev. Lett. 109, 183602 (2012)ADSCrossRefGoogle Scholar
  69. 69.
    F. Giraldi, F. Petruccione, Eur. Phys. J. D 67, 178 (2013) and references thereinADSCrossRefGoogle Scholar
  70. 70.
    A.D. Polyanin, A.V. Manzhirov, Handbook of Integral Equations (Chapman & Hall/CRC Press, 2008)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Quantum Research Group, School of Chemistry and PhysicsUniversity of KwaZulu-Natal and National Institute for Theoretical Physics (NITheP), KwaZulu-Natal Westville CampusDurbanSouth Africa

Personalised recommendations