Advertisement

The GBAR experiment

Gravitational behaviour of antihydrogen at rest
  • Yves SacquinEmail author
Regular Article
Part of the following topical collections:
  1. Topical issue: Electron and Positron Induced Processes

Abstract

Measuring the gravitational behaviour of antimatter is a crucial test of the Weak Equivalence Principle. However, the gravitational force is so weak that the experiment requires a cooling of antimatter never achieved so far. The GBAR experiment aims to overcome this challenge using the anti-ion \hbox{$\Hbarp$} H + ; a high-intensity positron source has been developed for this purpose.

Keywords

Topical issue: Electron and Positron Induced processes 

References

  1. 1.
    The GBAR Collaboration, Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest, CERN-SPSC-2011-029, SPSC-342, September 2011, http://cds.cern.ch/record/1386684/files/SPSC-P-342.pdf?version=1
  2. 2.
    P. Pérez, Y. Sacquin, Class. Quantum Grav. 29, 184009 (2012) CrossRefGoogle Scholar
  3. 3.
    The ALPHA Collaboration, A.E. Charman, Nat. Commun. 4, 1785 (2013) CrossRefGoogle Scholar
  4. 4.
    G. Gabrielse et al., Phys. Rev. Lett. 108, 113002 (2012) ADSCrossRefGoogle Scholar
  5. 5.
    J. Scherk, Phys. Lett. B 88, 265 (1979) ADSCrossRefMathSciNetGoogle Scholar
  6. 6.
    S. Bellucci, V. Faraoni, Phys. Lett. B 377, 55 (1996) ADSCrossRefMathSciNetGoogle Scholar
  7. 7.
    G. Chardin, Hyperfine Interact. 109, 83 (1997) ADSCrossRefGoogle Scholar
  8. 8.
    G. Chardin, AIP Conf. Proc. 643, 385 (2002) ADSCrossRefGoogle Scholar
  9. 9.
    V.A. Kostelecký, J.D. Tasson, Phys. Rev. D 83, 016013 (2011) ADSCrossRefGoogle Scholar
  10. 10.
    A. Benoît-Lévy, Ph.D. thesis, Université Paris XI, Orsay, 2009 Google Scholar
  11. 11.
    A. Benoît-Lévy, G. Chardin, A&A 537, A78 (2012) ADSCrossRefGoogle Scholar
  12. 12.
    L. Blanchet, Class. Quantum Grav. 24, 3529 (2007) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    L. Blanchet, Class. Quantum Grav. 24, 3541 (2007) ADSCrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    L. Blanchet, A. Tieck, Phys. Rev. D 78, 024031 (2008) ADSCrossRefGoogle Scholar
  15. 15.
    L. Blanchet, A. Tieck, Phys. Rev. D 80, 023524 (2009) ADSCrossRefGoogle Scholar
  16. 16.
    M. Nieto, T. Goldman, Phys. Rep. 205, 221 (1991) ADSCrossRefGoogle Scholar
  17. 17.
    M. Nieto, T. Goldman, Phys. Rep. 216, 343 (1992) CrossRefGoogle Scholar
  18. 18.
    L.I. Schiff, Phys. Rev. Lett. 1, 254 (1958) ADSCrossRefGoogle Scholar
  19. 19.
    CPLEAR coll., Phys. Lett. B 452, 425 (1999) ADSCrossRefGoogle Scholar
  20. 20.
    G. Gabrielse et al., Phys. Rev. Lett. 82, 3198 (1999) ADSCrossRefGoogle Scholar
  21. 21.
    S. Paksava et al., Phys. Rev. D 39, 1761 (1989) ADSCrossRefGoogle Scholar
  22. 22.
    J. Walz, T. Hänsch, Gen. Rel. Grav. 36, 561 (2004) ADSCrossRefzbMATHGoogle Scholar
  23. 23.
    N. Oshima et al., Phys. Rev. Lett. 93, 195001 (2004) ADSCrossRefGoogle Scholar
  24. 24.
    P. Comini, P.-A. Hervieux, New J. Phys. 15, 095022 (2013) ADSCrossRefGoogle Scholar
  25. 25.
    W. Schnitzler et al., Phys. Rev. Lett. 102, 070501 (2009) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.IRFU/SPP, CEA-SaclayGif-sur-Yvette CedexFrance

Personalised recommendations