Frequency comb polarization spectroscopy of multilevel rubidium atoms

  • Nataša VVujičićEmail author
  • Gordana Kregar
  • Ticijana Ban
  • Damir Aumiler
  • Goran Pichler
Regular Article


We present a theoretical and experimental study of the polarization effects obtained in 87Rb room temperature atoms excited by an optical frequency comb. The rotation of the linearly-polarized weak optical field (probe) occurs when a strong circularly-polarized coupling (pump) beam breaks the degeneracy of the system and thereby introduces birefringence into the medium. Resonant excitation of the rubidium atoms by circularly-polarized optical frequency comb results in redistribution of angular momentum states that gives a net spin polarization to the medium due to the optical pumping. The density matrix formalism is used to calculate the atom-light interaction and obtained Zeeman sublevel populations were taken for modeling polarization spectra on the D1 transition in the rubidium atom. Modeled polarization signals based on induced optical anisotropy are in very good agreement with obtained experimental results.


Optical Phenomena and Photonics 


  1. 1.
    D. Suter, The Physics of Laser-Atom Interactions (Cambridge University Press, Cambridge, 1997), p. 471Google Scholar
  2. 2.
    F.J.D. Arago, Mémoires de la classe des sciences math. et phys. de l’Institut Impérial de France 1, 93 (1811)Google Scholar
  3. 3.
    M. Faraday, Philos. Trans. R. Soc. London XIX, 1 (1848)Google Scholar
  4. 4.
    M. Faraday, Philos. Mag. 28, 294 (1848)Google Scholar
  5. 5.
    Z.K. Lee, D. Heiman, H. Wang, C.G. Fonstad, M. Sundaram, A.C. Gossard, Appl. Phys. Lett. 69, 3731 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    D. Budker, W. Gawlik, D.F. Kimbal, S.M. Rochester, V.V. Yashchuk, A. Weis, Rev. Mod. Phys. 74, 1153 (2002)ADSCrossRefGoogle Scholar
  7. 7.
    P. Siddons, N.C. Bell, Y. Cai, C.A. Adams, I.G. Hughes, Nat. Photon. 3, 225 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    I. Novikova, A.B. Matsko, G.R. Welch, Opt. Lett. 26, 1016 (2001)ADSCrossRefGoogle Scholar
  9. 9.
    P.F. Liao, G.C. Bjorklund, Phys. Rev. Lett. 36, 584 (1992)ADSCrossRefGoogle Scholar
  10. 10.
    W. Happer, B.S. Mather, Phys. Rev. Lett. 18, 577 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    W.F. Buell, M. Fink, Appl. Phys. B 60, S227 (1995)CrossRefGoogle Scholar
  12. 12.
    C. Wieman, T.W. Hänsch, Phys. Rev. Lett. 36, 1170 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    M. Kubasik, M. Koschorrek, M. Napolitano, S.R. de Echaniz, H. Crepaz, J. Eschner, E.S. Polzik, M.W. Mitchell, Phys. Rev. A 79, 043815 (2009)ADSCrossRefGoogle Scholar
  14. 14.
    K. Hammerer, A.S. Sorensen, E.S. Polzik, Rev. Mod. Phys. 82, 1041 (2010)ADSCrossRefGoogle Scholar
  15. 15.
    P. Siddons, C.A. Adams, I.G. Hughes, Phys. Rev. A 81, 043838 (2010)ADSCrossRefGoogle Scholar
  16. 16.
    M.L. Harris, C.S. Adams, S.L. Cornish, I.C. McLeod, E. Tarleton, I.G. Hughes, Phys. Rev. A 73, 063509 (2006)ADSGoogle Scholar
  17. 17.
    F.S. Pavone, G. Bianchini, F.S. Cataliotti, W.T. Hänsch, M. Inguscio, Opt. Lett. 22, 736 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    S. Wielandy, A.L. Gaeta, Phys. Rev. Lett. 81, 3359 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    T.H. Yoon, C.Y. Park, S.J. Park, Phys. Rev. A 70, 061802(R) (2004)ADSCrossRefGoogle Scholar
  20. 20.
    S.J. Park, C.Y. Park, T.H. Yoon, Phys. Rev. A 71, 063819 (2005)ADSCrossRefGoogle Scholar
  21. 21.
    S. Li, B. Wang, X. Yang, Y. Han, H. Wang, M. Xiao, K.C. Peng, Phys. Rev. A 74, 033821 (2006)ADSCrossRefGoogle Scholar
  22. 22.
    N. Hombo, S. Taniguchi, S. Sugimura, K. Fujita, M. Mitsunaga, J. Opt. Soc. Am. B 29, 1717 (2012)CrossRefGoogle Scholar
  23. 23.
    J. Ye, S.T. Cundiff, Femtosecond Optical Frequency Comb Technology (Springer, Boston, 2005), p. 361Google Scholar
  24. 24.
    S.T. Cundiff, J. Ye, Rev. Mod. Phys. 75, 325 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    A. Marian, M.C. Stowe, J.R. Lawall, D. Felinto, J. Ye, Science 306, 2063 (2004)ADSCrossRefGoogle Scholar
  26. 26.
    M.C. Stowe, A. Peer, J. Ye, Phys. Rev. Lett. 100, 203001 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    D. Aumiler, Phys. Rev. A 82, 055402 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    D. Felinto, C.A.C. Bosco, L.H. Acioli, S.S. Vianna, Opt. Commun. 215, 69 (2003)ADSCrossRefGoogle Scholar
  29. 29.
    D. Aumiler, T. Ban, G. Pichler, Phys. Rev. A 79, 063403 (2009)ADSCrossRefGoogle Scholar
  30. 30.
    D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Phys. Rev. Lett. 95, 233001 (2005)ADSCrossRefGoogle Scholar
  31. 31.
    T. Ban, D. Aumiler, H. Skenderović, G. Pichler, Phys. Rev. A 73, 043407 (2006)ADSCrossRefGoogle Scholar
  32. 32.
    N. Vujičić, S. Vdović, D. Aumiler, T. Ban, H. Skenderović, G. Pichler, Eur. Phys. J. D 41, 447 (2007)ADSCrossRefGoogle Scholar
  33. 33.
    N. Vujičić, T. Ban, G. Kregar, D. Aumiler, G. Pichler, Phys. Rev. A 87, 013438 (2013)ADSCrossRefGoogle Scholar
  34. 34.
    D.A. Steck, Rubidium 87 D Line Data (Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, Oregon, 2010)Google Scholar
  35. 35.
    O. Axner, J. Gustafsson, N. Omenetto, J.D. Winefordner, Spectrochim. Acta Part B 59, 1 (2004)ADSCrossRefGoogle Scholar
  36. 36.
    T. Ban, D. Aumiler, H. Skenderović, S. Vdović, N. Vujičić, G. Pichler, Phys. Rev. A 76, 043410 (2007)ADSCrossRefGoogle Scholar
  37. 37.
    C.P. Pearman, C.A. Adams, S.G. Cox, P.F. Griffin, D.A. Smith, I.G. Hughes, J. Phys. B 35, 5141 (2002)ADSCrossRefGoogle Scholar
  38. 38.
    W. Demtröder, Laser Spectroscopy (Springer, Berlin, 1998)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Nataša VVujičić
    • 1
    Email author
  • Gordana Kregar
    • 1
  • Ticijana Ban
    • 1
  • Damir Aumiler
    • 1
  • Goran Pichler
    • 1
  1. 1.Institute of PhysicsZagrebCroatia

Personalised recommendations