The European Physical Journal D

, 67:242

Matter-wave solitons in a spin-1 Bose-Einstein condensate with time-modulated external potential and scattering lengths

  • Deng-Shan Wang
  • Yu-Ren Shi
  • Kwok Wing Chow
  • Zhao-Xian Yu
  • Xiang-Gui Li
Regular Article


In this paper, we present many matter-wave solitons in a system of three component Gross-Pitaevskii equation arising from the context of spinor Bose-Einstein condensates with time-modulated external potential and scattering lengths. The three component Gross-Pitaevskii equation with time-dependent parameters is first transformed into a three coupled nonlinear Schrödinger equation, then the exact soliton solutions of the three coupled nonlinear Schrödinger equation are given explicitly. Finally, the dynamics of the matter-wave solitons in the F = 1 spinor Bose-Einstein condensates is examined by specially choosing the frequency of the external potential. It is shown that when the frequency of the external potential is constant, there exist different kinds of matter-wave solitons as the atomic s-wave scattering lengths are varied about time, such as solitons with shape changing interactions, two-soliton bound states, squeezed matter-wave solitons, single bright and dark solitons. When the frequency of the external potential is time-modulated, there also exist various matter-wave solitons in the F = 1 spinor Bose-Einstein condensates, and we show that the time evolutions of the matter-wave solitons are sharply changed by the time-dependent trap frequency and nonlinear coefficients.


Cold Matter and Quantum Gas 


  1. 1.
    J. Stenger, S. Inouye, D.M. Stamper-Kurn, H.J. Miesner, A.P. Chikkatur, W. Ketterle, Nature 396, 345 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    A.E. Leanhardt, Y. Shin, D. Kielpinski, D.E. Pritchard, W. Ketterle, Phys. Rev. Lett. 90, 140403 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    J. Ieda, T. Miyakawa, M. Wadati, Phys. Rev. Lett. 93, 194102 (2004)ADSCrossRefGoogle Scholar
  4. 4.
    L. Li, Z. Li, B.A. Malomed, D. Mihalache, W.M. Liu, Phys. Rev. A 72, 033611 (2005)ADSCrossRefGoogle Scholar
  5. 5.
    H.E. Nistazakis, D.J. Frantzeskakis, P.G. Kevrekidis, B.A. Malomed, R. Carretero-Gonzalez, Phys. Rev. A 77, 033612 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    B.J. Dabrowska-Wuster, E.A. Ostrovskaya, T.J. Alexander, Y.S. Kivshar, Phys. Rev. A 75, 023617 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    P. Szankowski, M. Trippenbach, E. Infeld, G. Rowlands, Phys. Rev. Lett. 105, 125302 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    T.-L. Ho, Phys. Rev. Lett. 81, 742 (1998)ADSCrossRefGoogle Scholar
  9. 9.
    T. Ohmi, K. Machida, J. Phys. Soc. Jpn 67, 1822 (1998)ADSCrossRefGoogle Scholar
  10. 10.
    E.G.M. van Kempen, S.J.J.M.F. Kokkelmans, D.J. Heinzen, B.J. Verhaar, Phys. Rev. Lett. 88, 093201 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    N.N. Klausen, J.L. Bohn, C.H. Greene, Phys. Rev. A 64, 053602 (2001)ADSCrossRefGoogle Scholar
  12. 12.
    S. Inouye, M.R. Andrews, J. Stenger, H.-J. Miesner, D.M. Stamper-Kurn, W. Ketterle, Nature 392, 151 (1998)ADSCrossRefGoogle Scholar
  13. 13.
    Z.X. Liang, Z.D. Zhang, W.M. Liu, Phys. Rev. Lett. 94, 050402 (2005)ADSCrossRefGoogle Scholar
  14. 14.
    S.L. Cornish, N.R. Claussen, J.L. Roberts, E.A. Cornell, C.E. Wieman, Phys. Rev. Lett. 85, 1795 (2000)ADSCrossRefGoogle Scholar
  15. 15.
    S. Rajendrana, P. Muruganandamb, M. Lakshmanana, Physica D 239, 366 (2010)ADSCrossRefMathSciNetGoogle Scholar
  16. 16.
    X.F. Zhang, X.H. Hu, X.X. Liu, W.M. Liu, Phys. Rev. A 79, 033630 (2009)ADSCrossRefGoogle Scholar
  17. 17.
    J. Janis, M. Banks, N.P. Bigelow, Phys. Rev. A 71, 013422 (2005)ADSCrossRefGoogle Scholar
  18. 18.
    B. Baizakov, G. Filatrella, B. Malomed, M. Salerno, Phys. Rev. E 71, 036619 (2005)ADSCrossRefGoogle Scholar
  19. 19.
    R. Atre, P.K. Panigrahi, G.S. Agarwal, Phys. Rev. E 73, 056611 (2006)ADSCrossRefMathSciNetGoogle Scholar
  20. 20.
    R. Yamazaki, S. Taie, S. Sugawa, Y. Takahashi, Phys. Rev. Lett. 105, 050405 (2010)ADSCrossRefGoogle Scholar
  21. 21.
    J. Ieda, T. Miyakawa, M. Wadati, J. Phys. Soc. Jpn 73, 2996 (2004)ADSCrossRefMATHGoogle Scholar
  22. 22.
    T. Kanna, K. Sakkaravarthi, C.S. Kumar, M. Lakshmanan, M. Wadati, J. Math. Phys. 50, 113520 (2009)ADSCrossRefMathSciNetGoogle Scholar
  23. 23.
    H.D. Wahlquist, F.B. Estabrook, J. Math. Phys. 16, 1 (1975)ADSCrossRefMATHMathSciNetGoogle Scholar
  24. 24.
    R. Dodd, A.P. Fordy, Phys. Lett. A 89, 168 (1982)ADSCrossRefMathSciNetGoogle Scholar
  25. 25.
    D.S. Wang, in Recent Progress in Optical Fiber Research, edited by M. Yasin, S.W. Harun, H. Arof (InTech, 2012), pp. 49–64Google Scholar
  26. 26.
    M.J. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform (SIAM, 1981)Google Scholar
  27. 27.
    V.S. Shchesnovich, J. Yang, J. Math. Phys. 44, 4604 (2003)ADSCrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    D.S. Wang, D. Zhang, J. Yang, J. Math. Phys. 51, 023510 (2010)ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Deng-Shan Wang
    • 1
  • Yu-Ren Shi
    • 2
  • Kwok Wing Chow
    • 3
  • Zhao-Xian Yu
    • 1
  • Xiang-Gui Li
    • 1
  1. 1.School of Applied Science, Beijing Information Science and Technology UniversityBeijingP.R. China
  2. 2.College of Physics and Electronic Engineering, Northwest Normal UniversityLanzhouP.R. China
  3. 3.Department of Mechanical Engineering, University of Hong KongHong KongP.R. China

Personalised recommendations