Advertisement

Electron attachment to oxygen in nitrogen buffer gas at atmospheric pressure

  • Marek Kučera
  • Michal StanoEmail author
  • Jolanta Wnorowska
  • Wiesława Barszczewska
  • Detlef Loffhagen
  • Štefan Matejčík
Regular Article

Abstract

We have carried out experimental and theoretical studies of three body electron attachment (TBEA) to O2 in N2/O2 mixtures. We have applied three different experimental methods to determine the apparent rate constant k for TBEA to O2 for reduced electric fields E/ n from 0.5 Td up to 4.5 Td and O2 concentrations from 0.02% up to 3%. From the apparent rate constant k we have evaluated three body rate constant for electron attachment to O2 in pure O2 \(\left( {k_{O_2 } } \right)\) and in pure N2 \(\left( {k_{N_2 } } \right)\). The comparison of present data with former studies shows that the former values of \(k_{N_2 }\) overestimated the efficiency of this reaction, while in case of \(k_{O_2 }\) we have found agreement with earlier studies. We have solved numerically the Boltzmann equation of the electrons and calculated the values of k, \(k_{N_2 }\) and \(k_{O_2 }\) using well established cross sections. Using the known collision cross section set for TBEA to O2, very good agreement between calculated and measured results for \(k_{O_2 }\) was found, while in the case of k and \(k_{N_2 }\) we had to introduce a scaling function, which describes the decrease of the efficiency of TBEA to O2 in presence of N2 and the dependence of the scaling function on E/n was determined.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    L.G. Christophorou, Radiat. Phys. Chem. 12, 19 (1978)ADSCrossRefGoogle Scholar
  2. 2.
    F. Bloch, N.E. Bradbury, Phys. Rev. 48, 689 (1935)ADSCrossRefzbMATHGoogle Scholar
  3. 3.
    L.M. Chanin, A.V. Phelps, M.A. Biondi, Phys. Rev. 128, 219 (1962)ADSCrossRefGoogle Scholar
  4. 4.
    NIST Chemistry WebBook, webbook.nist.gov
  5. 5.
    D.L. McCorkle, L.G. Christophorou, V.E. Anderson, J. Phys. B 5, 1211 (1972)ADSCrossRefGoogle Scholar
  6. 6.
    J. de Urquijo, A. Bekstein, O. Ducasse, G. Ruíz-Vargas, M. Yousfi, M. Benhenni, Eur. Phys. J. D 55, 637 (2009)ADSCrossRefGoogle Scholar
  7. 7.
    D. Spence, G.J. Schulz, Phys Rev. A 5, 724 (1972)ADSCrossRefGoogle Scholar
  8. 8.
    J.L. Pack, A.V. Phelps, J. Chem. Phys. 44, 1870 (1966)ADSCrossRefGoogle Scholar
  9. 9.
    G.S. Hurst, T.E. Bortner, Phys. Rev. 114, 116 (1959)ADSCrossRefGoogle Scholar
  10. 10.
    J.A. Stockdale, L.G. Christophorou, G.S. Hurst, J. Chem. Phys. 47, 3267 (1967)ADSCrossRefGoogle Scholar
  11. 11.
    R.E. Goans, L.G. Christophorou, J. Chem. Phys. 60, 1036 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    H. Shimamori, Y. Hatano, Chem. Phys. 12, 439 (1976)ADSCrossRefGoogle Scholar
  13. 13.
    H. Shimamori, Y. Hatano, Chem. Phys. 21, 187 (1977)ADSCrossRefGoogle Scholar
  14. 14.
    H. Shimamori, R.W. Fessenden, J. Chem. Phys. 74, 453 (1981)ADSCrossRefGoogle Scholar
  15. 15.
    F.K. Truby, Phys. Rev. A 6, 671 (1972)ADSCrossRefGoogle Scholar
  16. 16.
    T.D. Märk, K. Leiter, W. Ritter, A. Stamatovic, Phys. Rev. Lett. 55, 2559 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    S. Matejcik, A. Kiendler, P. Stampfli, A. Stamatovic, T.D. Märk, Phys. Rev. Lett. 77, 3771 (1996)ADSCrossRefGoogle Scholar
  18. 18.
    S. Barsotti, E. Leber, M.-W. Ruf, H. Hotop, Int. J. Mass Spectrom. 220, 313 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M. Tabrizchi, A. Abedi, J. Phys. Chem. A 108, 6319 (2004)CrossRefGoogle Scholar
  20. 20.
    H. Feng, W. Niu, H. Han, C. Huang, H. Wang, J. Matuska, M. Sabo, S. Matejcik, H. Jiang, Y. Chu, Int. J. Mass Spectrom. 305, 30 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    C.A. Mayhew, A.D.J. Critchley, D.C. Howse, V. Mikhailov, M.A. Parkes, Eur. Phys. J. D 35, 307 (2005)ADSCrossRefGoogle Scholar
  22. 22.
    J. Kopyra, J. Wnorowska, M. Foryś, I. Szamrej, Int. J. Mass Spectrom. 268, 60 (2007)ADSCrossRefGoogle Scholar
  23. 23.
    M. Stano, N. Pinhão, D. Loffhagen, M. Kučera, Z. Donkó, Š. Matejčík, Eur. Phys. J. D 65, 489 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)ADSCrossRefGoogle Scholar
  25. 25.
    L.B. Loeb, Basic Processes in Gaseous Electronics (University of California Press, Berkeley, 1955)Google Scholar
  26. 26.
    G.G. Raju, Gaseous Electronics (CRC Taylor & Francis, Boca Raton, 2006)Google Scholar
  27. 27.
    H.R. Shamlouei, M. Tabrizchi, Int. J. Mass Spectrom. 273, 78 (2008)ADSCrossRefGoogle Scholar
  28. 28.
    H. Leyh, D. Loffhagen, R. Winkler, Comput. Phys. Commun. 113, 33 (1998)ADSCrossRefzbMATHGoogle Scholar
  29. 29.
    W.L. Morgan, J.P. Boeuf, L.C. Pitchford, The Siglo Data base, CPAT and Kinema Software, http://www.siglo-kinema.com
  30. 30.
  31. 31.
    M. Elford, S. Buckman, M. Brunger, in Interactions of Photons and Electrons with Molecules (Landolt-Börnstein), edited by Y. Itikawa (Springer, Berlin, 2003), Vol. 17C, Chap. 6.3Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Marek Kučera
    • 1
  • Michal Stano
    • 1
    Email author
  • Jolanta Wnorowska
    • 2
  • Wiesława Barszczewska
    • 2
  • Detlef Loffhagen
    • 3
  • Štefan Matejčík
    • 1
  1. 1.Department of Experimental PhysicsComenius UniversityBratislavaSlovakia
  2. 2.Chemistry DepartmentSiedlce UniversitySiedlcePoland
  3. 3.Leibniz Institute for Plasma Science and TechnologyGreifswaldGermany

Personalised recommendations