Advertisement

Wave packet study of the methyl iodide photodissociation dynamics in the 266−333 nm wavelength range

  • Alberto García-VelaEmail author
  • Luis Bañares
Regular Article

Abstract

Photolysis of CH3I is studied in the range of excitation wavelengths λ = 266−333 nm using a three-dimensional wave packet method. The aim is to try to clarify some discrepancies arisen in different experiments for the vibrational distributions of the CH3   (ν 2) fragment (being ν 2 the umbrella bend mode or the symmetric deformation mode of the CH3 group) produced through the channel CH3   (ν 2) + I(2P3/2). The simulations predict non-statistical vibrational distributions peaking at ν 2 = 1 in the range λ = 266−315 nm, and a change to statistical behavior with a maximum at ν 2 = 0 for longer wavelengths. The calculations agree qualitatively with all the available experiments for λ = 266−280 nm. For λ ≥ 298 nm theory is consistent with one of the experiments and disagrees with the other two.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    A. Gedanken, M.D. Rowe, Chem. Phys. Lett. 34, 39 (1975)ADSCrossRefGoogle Scholar
  2. 2.
    R.S. Mulliken, E. Teller, Phys. Rev. 61, 283 (1942)ADSCrossRefGoogle Scholar
  3. 3.
    R.S. Mulliken, J. Chem. Phys. 8, 382 (1940)ADSCrossRefGoogle Scholar
  4. 4.
    S.J. Riley, K.R. Wilson, Faraday Discuss. Chem. Soc. 53, 132 (1972)CrossRefGoogle Scholar
  5. 5.
    D.W. Chandler, P.L. Houston, J. Chem. Phys. 87, 1445 (1987) ADSCrossRefGoogle Scholar
  6. 6.
    S.M. Penn, C.C. Hayden, K.J.C. Muyskens, F.F. Crim, J. Chem. Phys. 89, 2909 (1988) ADSCrossRefGoogle Scholar
  7. 7.
    R.O. Loo, H.-P. Haerri, G.E. Hall, P.L. Houston, J. Chem. Phys. 90, 4222 (1989) ADSCrossRefGoogle Scholar
  8. 8.
    I. Powis, J.F. Black, J. Phys. Chem. 93, 2461 (1989) CrossRefGoogle Scholar
  9. 9.
    D.W. Chandler, J.W. Thoman Jr., M.H.M. Janssen, D.H. Parker, Chem. Phys. Lett. 156, 151 (1989) ADSCrossRefGoogle Scholar
  10. 10.
    K.Q. Lao, M.D. Person, P. Xayariboun, L.J. Butler, J. Chem. Phys. 92, 823 (1990)ADSCrossRefGoogle Scholar
  11. 11.
    D.W. Chandler, M.H.M. Janssen, S. Stolte, R.N. Strickland, J.W. Thoman Jr., D.H. Parker, J. Phys. Chem. 94, 4893 (1990) CrossRefGoogle Scholar
  12. 12.
    B.R. Johnson, C. Kittrell, P.B. Kelly, J.L. Kinsey, J. Phys. Chem. 100, 7743 (1996) CrossRefGoogle Scholar
  13. 13.
    A.T.J.B. Eppink, D.H. Parker, J. Chem. Phys. 109, 4758 (1998) ADSCrossRefGoogle Scholar
  14. 14.
    D. Zhong, A.H. Zewail, J. Phys. Chem. A 102, 4031 (1998) CrossRefGoogle Scholar
  15. 15.
    A.T.J.B. Eppink, D.H. Parker, J. Chem. Phys. 110, 832 (1999) ADSCrossRefGoogle Scholar
  16. 16.
    A.J. van den Brom, M.L. Lipciuc, M.H.M. Janssen, Chem. Phys. Lett. 368, 324 (2003) ADSCrossRefGoogle Scholar
  17. 17.
    F. Aguirre, S.T. Pratt, J. Chem. Phys. 122, 234303 (2005) ADSCrossRefGoogle Scholar
  18. 18.
    G. Li, H.J. Hwang, H.C. Jung, Rev. Sci. Instrum. 76, 023105 (2005) ADSCrossRefGoogle Scholar
  19. 19.
    G. Li, Y.K. Shin, H.J. Hwang, J. Phys. Chem. A 109, 9226 (2005) CrossRefGoogle Scholar
  20. 20.
    R. de Nalda, J.G. Izquierdo, J. Durá, L. Bañares, J. Chem. Phys. 126, 021101 (2007) ADSCrossRefGoogle Scholar
  21. 21.
    R. de Nalda, J. Durá, A. García-Vela, J.G. Izquierdo, J. González-Vázquez, L. Bañares, J. Chem. Phys. 128, 244309 (2008) ADSCrossRefGoogle Scholar
  22. 22.
    J. Durá, R. de Nalda, J. Álvarez, J.G. Izquierdo, G.A. Amaral, L. Bañares, Chem. Phys. Chem. 9, 1245 (2008)CrossRefGoogle Scholar
  23. 23.
    J. Durá, G.A. Amaral, R. de Nalda, L. Bañares, J. Chem. Phys. 131, 134311 (2009) ADSCrossRefGoogle Scholar
  24. 24.
    L. Rubio-Lago, A. García-Vela, A. Arregui, G.A. Amaral, L. Bañares, J. Chem. Phys. 131, 174309 (2009) ADSCrossRefGoogle Scholar
  25. 25.
    M. Cheng, Z. Yu, L. Hu, D. Yu, C. Dong, Y. Du, Q. Zhu, J. Phys. Chem. A 115, 1153 (2011) CrossRefGoogle Scholar
  26. 26.
    L. Rubio-Lago, J.D. Rodríguez, A. García-Vela, M.G. González, G.A. Amaral, L. Bañares, Phys. Chem. Chem. Phys. 13, 8186 (2011) CrossRefGoogle Scholar
  27. 27.
    M.G. González, J.D. Rodríguez, L. Rubio-Lago, A. García-Vela, L. Bañares, Phys. Chem. Chem. Phys. 13, 16404 (2011) CrossRefGoogle Scholar
  28. 28.
    A. García-Vela, R. de Nalda, J. Durá, J. González-Vázquez, L. Bañares, J. Chem. Phys. 135, 154306 (2011) ADSCrossRefGoogle Scholar
  29. 29.
    M. Shapiro, R. Bersohn, J. Chem. Phys. 73, 3810 (1980) ADSCrossRefGoogle Scholar
  30. 30.
    M. Shaphiro, J. Phys. Chem. 90, 3644 (1986) CrossRefGoogle Scholar
  31. 31.
    H. Guo, G.C. Schatz, J. Chem. Phys. 93, 393 (1990)ADSCrossRefGoogle Scholar
  32. 32.
    H. Guo, K.Q. Lao, G.C. Schatz, A.D. Hammerich, J. Chem. Phys. 94, 6562 (1991) ADSCrossRefGoogle Scholar
  33. 33.
    Y. Amatatsu, K. Morokuma, S. Yabushita, J. Chem. Phys. 94, 4858 (1991) ADSCrossRefGoogle Scholar
  34. 34.
    Y. Amatatsu, S. Yabushita, K. Morokuma, J. Chem. Phys. 104, 9783 (1996) ADSCrossRefGoogle Scholar
  35. 35.
    D. Xie, H. Guo, Y. Amatatsu, R. Kosloff, J. Phys. Chem. A 104, 1009 (2000) CrossRefGoogle Scholar
  36. 36.
    H. Guo, J. Chem. Phys. 96, 6629 (1992) ADSCrossRefGoogle Scholar
  37. 37.
    M.-Y. Zhao, Q.-T. Meng, T.-X. Xie, K.-L. Han, G.-H. He, Int. J. Quantum Chem. 101, 153 (2005) CrossRefGoogle Scholar
  38. 38.
    A. García-Vela, L. Bañares, Chem. Phys. Lett. 477, 271 (2009) ADSCrossRefGoogle Scholar
  39. 39.
    A. García-Vela, L. Bañares, Phys. Chem. Chem. Phys. 13, 2228 (2011) CrossRefGoogle Scholar
  40. 40.
    U. Manthe, A.D. Hammerich, Chem. Phys. Lett. 211, 7 (1993)ADSCrossRefGoogle Scholar
  41. 41.
    A.D. Hammerich, U. Manthe, R. Kosloff, H.-D. Meyer, L.S. Cederbaum, J. Chem. Phys. 101, 5623 (1994) ADSCrossRefGoogle Scholar
  42. 42.
    C.R. Evenhuis, U. Manthe, J. Phys. Chem. A 115, 5992 (2011) CrossRefGoogle Scholar
  43. 43.
    D. Ajitha, M. Wierzbowska, R. Lindh, P.A. Malmqvist, J. Chem. Phys. 121, 5761 (2004) ADSCrossRefGoogle Scholar
  44. 44.
    A.B. Alekseyev, H.-P. Liebermann, R.J. Buenker, S.N. Yurchenko, J. Chem. Phys. 126, 234102 (2007) ADSCrossRefGoogle Scholar
  45. 45.
    A.B. Alekseyev, H.-P. Liebermann, R.J. Buenker, J. Chem. Phys. 126, 234103 (2007) ADSCrossRefGoogle Scholar
  46. 46.
    A.B. Alekseyev, private communication Google Scholar
  47. 47.
    J.C. Juanes-Marcos, A. García-Vela, J. Chem. Phys. 112, 4983 (2000) ADSCrossRefGoogle Scholar
  48. 48.
    A. García-Vela, J. Chem. Phys. 104, 1047 (1996) ADSCrossRefGoogle Scholar
  49. 49.
    A. García-Vela, K.C. Janda, J. Chem. Phys. 124, 034305 (2006) ADSCrossRefGoogle Scholar
  50. 50.
    G.G. Balint-Kurti, M. Shapiro, Chem. Phys. 61, 137 (1981)ADSCrossRefGoogle Scholar
  51. 51.
    G.G. Balint-Kurti, L. Füsti-Molnár, A. Brown, Phys. Chem. Chem. Phys. 3, 702 (2001)CrossRefGoogle Scholar
  52. 52.
    G.G. Balint-Kurti, R.N. Dixon, C.C. Marston, J. Chem. Soc. Faraday Trans. 86, 1741 (1990) CrossRefGoogle Scholar
  53. 53.
    G.G. Balint-Kurti, R.N. Dixon, C.C. Marston, Int. Rev. Phys. Chem. 11, 317 (1992)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Departamento de Física Atómica, Molecular y de Agregados, Instituto de Física FundamentalConsejo Superior de Investigaciones CientíficasMadridSpain
  2. 2.Departamento de Química Física I, Facultad de Ciencias Químicas, and Unidad Asociada de I+D+i al Consejo Superior de Investigaciones CientíficasUniversidad Complutense de MadridMadridSpain

Personalised recommendations