Advertisement

Enhanced ultraviolet-blue emission and Raman modes in ZnO:Cr2O3 composite nanoparticles

  • Thangaraj Pandiyarajan
  • Mauro L. Baesso
  • Balasubramanian KarthikeyanEmail author
Regular Article

Abstract

We present secondary phase identification studies on Cr doped ZnO nanoparticles prepared by the sol-gel method. X-ray diffraction analysis confirms the formation of chromium oxides and there is found to be an increase of lattice parameter with thermal annealing. Scanning electron microscopic studies show the increase in the crystalline nature and particle size. Optical absorption measurements of the as prepared sample exhibit a strong band at 356 nm due to the free exciton absorption of the ZnO nanoparticles. An absorption band at 277 nm is due to the 3T13T2 transition in Cr4+ ions which appears only for the annealed samples. Photoluminescence studies show that deep level emission is completely suppressed after Cr2O3 formation/thermal annealing. Raman and FTIR spectra reveal formation of the Cr2O3 phase. Thermal annealing leads to the increase of crystalline nature which gives an enhancement to the Raman modes.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    D.C. Look, B. Claflin, Y.I. Alivov, S.J. Park, Phys. Stat. Sol. 201, 2203 (2004)ADSCrossRefGoogle Scholar
  2. 2.
    Y.S. Choi, J.W. Kang, D.K. Hwang, S.J. Park, IEEE Trans. Electron Devices 57, 26 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A.N. Georgobiani, J. Lumin. 48, 839 (1991)CrossRefGoogle Scholar
  4. 4.
    K.L. Chopra, P.D. Paulson, V. Dutta, Prog. Photovolt.: Res. Appl. 12, 69 (2004)CrossRefGoogle Scholar
  5. 5.
    R.L. Hoffman, B.J. Norris, J.F. Wage, Appl. Phys. Lett. 82, 733 (2003)ADSCrossRefGoogle Scholar
  6. 6.
    Dhananjay, S.B. Krupanidhi, J. Appl. Phys. 101, 123717 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    R.L. Hoffman, J. Appl. Phys. 95, 5813 (2004)ADSCrossRefGoogle Scholar
  8. 8.
    Y. Yang, Y. Jin, H. He, Q. Wang, Y. Tu, H. Lu, Z. Ye, J. Am. Chem. Soc. 132, 13381 (2010)CrossRefGoogle Scholar
  9. 9.
    B. Karthikeyan, C.S. Suchand Sandeep, T. Pandiyarajan, P. Venkatesan, R. Philip, Appl. Phys. Lett. 95, 023118 (2009)CrossRefGoogle Scholar
  10. 10.
    Y.S. Wang, P.J. Thomas, P.O. Brien, J. Phys. Chem. B 110, 21412 (2006)Google Scholar
  11. 11.
    S. Sapra, D.D. Sarma, Phys. Rev. B 69, 125304 (2004)ADSGoogle Scholar
  12. 12.
    G. Pozina, L.L. Yang, Q.X. Zhao, L. Hultman, P.G. Lagoudakis, Appl. Phys. Lett. 97, 131909 (2010)ADSGoogle Scholar
  13. 13.
    Y.C. Lee, S.Y. Hu, W. Water, K.K. Tiong, Z.C. Feng, Y.T. Chen, J.C. Huang, J.W. Lee, C.C. Huang, J.L. Shen, M.H. Cheng, J. Lumin. 129, 148 (2009)Google Scholar
  14. 14.
    J. Kim, J.H. Yun, S.W. Jee, Y.C. Park, M. Ju, S. Han, Y. Kim, J.H. Kim, W.A. Anderson, J.H. Lee, J. Yi, Mater. Lett. 65, 786 (2011)Google Scholar
  15. 15.
    C.W. Zou, X.D. Yan, R.Q. Chen, Z.Y. Wu, A. Alyamani, W. Gao, Appl. Phys. Lett. 98, 111904 (2011)ADSGoogle Scholar
  16. 16.
    L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, J. Phys. Chem. C 113, 8460 (2009)Google Scholar
  17. 17.
    K. Jayanthi, S. Chawla, A.G. Joshi, Z.H. Khan, R.K. Kotnala, J. Phys. Chem. C 114, 18429 (2010)Google Scholar
  18. 18.
    L. Schneider, S.V. Zaitsev, W. Jin, A. Kompch, M. Winterer, M. Acet, G. Bacher, Nanotechnology 20, 135604 (2009)ADSGoogle Scholar
  19. 19.
    Y.Y. Xi, A.M.C. Ng, Y.F. Hsu, A.B. Djurišić, B.Q. Huang, L. Ge, X.Y. Chen, W.K. Chan, H.L. Tam, K.W. Cheah, Appl. Phys. Lett. 94, 203502 (2009)ADSGoogle Scholar
  20. 20.
    Y. Liu, J. Yang, Q. Guan, L. Yang, H. Liu, Y. Zhang, Y. Wang, D. Wang, J. Lang, Y. Yang, L. Fei, M. Wei, Appl. Surf. Sci. 256, 3559 (2010)ADSGoogle Scholar
  21. 21.
    C.F. Fu, L.F. Han, C. Liu, Phys. Stat. Sol. A 1, 5 (2011)Google Scholar
  22. 22.
    S.A. Pianaro, E.C. Pereira, L.O.S. Bulhoes, E. Longo, J.A. Varela, J. Mater. Sci. 30, 133 (1995)ADSGoogle Scholar
  23. 23.
    Y.H. Kim, H. Kawamura, M. Nawata, J. Mater. Sci. 32, 1665 (1997)ADSGoogle Scholar
  24. 24.
    Y. Shimizu, F.C. Li, Y. Takao, M. Egashira, J. Am. Ceram. Soc. 81, 1633 (1998)Google Scholar
  25. 25.
    Y. Kubowa, O. Oyama, J. Phys. Chem. 60, 833 (1958)Google Scholar
  26. 26.
    S. Jacob, A.U. Santhoskumar, K.P. Bhuvanan, K. Palanivelu, S.K. Nayak, Mater. Sci. Semicond. Process. 15, 326 (2012)Google Scholar
  27. 27.
    I. Satoh, T. Kobayashi, K. Katayama, T. Okada, T. Itoh, Appl. Phys. A 79, 1445 (2004)ADSGoogle Scholar
  28. 28.
    X-Ray Diffraction: A Practical Approach, edited by C. Suryanarayana, M. Grant Norton (Plenum Press, 1998), p. 213Google Scholar
  29. 29.
    X.S. Wang, Z.C. Wu, J.F. Webb, Z.G. Liu, Appl. Phys. A 77, 561 (2003)ADSGoogle Scholar
  30. 30.
    H.J. Gulley-Stahl, W.L. Schmidt, H.A. Bullen, J. Mater. Sci. 43, 7066 (2008)ADSGoogle Scholar
  31. 31.
    S. Musi, M. Maljkovi, S. Popovi, R. Trojko, Croat. Chem. Acta 72, 789 (1999)Google Scholar
  32. 32.
    P.G. Wenthold, K.L. Jonas, W.C. Lineberger, J. Chem. Phys. 23, 106 (1997)Google Scholar
  33. 33.
    G. Gouadec, P. Colomban, Prog. Cryst. Growth Charact. Mater. 53, 1 (2007)Google Scholar
  34. 34.
    X. Wang, J. Xu, X. Yu, K. Xue, J. Yu, X. Zhao, Appl. Phys. Lett. 91, 031908 (2007)ADSGoogle Scholar
  35. 35.
    J. Yang, W.N. Martens, R.L. Frost, J. Raman Spectrosc. 42, 1142 (2011)ADSGoogle Scholar
  36. 36.
    J. Yang, H. Cheng, W.N. Martens, R.L. Frost, J. Raman Spectrosc. 42, 1069 (2011)ADSGoogle Scholar
  37. 37.
    A.B. Djurisic, Y.H. Leung, Small 2, 944 (2006)Google Scholar
  38. 38.
    S. Ram, J. Mater. Sci. 38, 643 (2003)ADSGoogle Scholar
  39. 39.
    R. Cusco, E.A. Llado, J. Ibanez, L. Artus, J. Jimenez, B. Wang, M.J. Callahan, Phys. Rev. B 75, 165202 (2007)ADSGoogle Scholar
  40. 40.
    S.T. Tan, B.J. Chen, X.W. Sun, W.J. Fan, H.S. Kwok, X.H. Zhang, S.J. Chua, J. Appl. Phys. 98, 013505 (2005)ADSGoogle Scholar
  41. 41.
    H. Tampo, H. Shibata, K. Maejima, A. Yamad, K. Matsubara, P. Fons, S. Niki, T. Tainaka, Y. Chiba, H. Kanie, Appl. Phys. Lett. 91, 261907 (2007)ADSGoogle Scholar
  42. 42.
    F. Oba, M. Choi, A. Togo, I. Tanaka, Sci. Technol. Adv. Mater. 12, 034302 (2011)Google Scholar
  43. 43.
    C.H. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Choa, J. Appl. Phys. 105, 013502 (2009)ADSGoogle Scholar
  44. 44.
    B.H. Zeng, G. Duan, Y. Li, S. Yang, X. Xu, W. Cai, Adv. Funct. Mater. 20, 561 (2010)Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Thangaraj Pandiyarajan
    • 1
  • Mauro L. Baesso
    • 2
  • Balasubramanian Karthikeyan
    • 1
    Email author
  1. 1.Department of PhysicsNational Institute of TechnologyTiruchirappalliIndia
  2. 2.Departamento de Física, Universidade Estadual de MaringáMaringáBrazil

Personalised recommendations