Advertisement

Self-consistent field theory of polarised Bose-Einstein condensates: dispersion of collective excitations

  • Pavel A. AndreevEmail author
  • Leonid S. Kuz’menkov
Regular Article

Abstract

We suggest the construction of a set of quantum hydrodynamic equations for Bose-Einstein condensates (BECs), where the atoms have an electric dipole moment. The contribution of dipole-dipole interactions (DDIs) to the Euler equation is obtained. Quantum equations for the evolution of a medium polarisation are derived. A developed mathematical method allows us to study the effect of interactions on the evolution of the polarisation. The developed method can be applied to various physical systems in which dynamics are affected by DDIs. The derivation of the Gross-Pitaevskii equation for polarised particles from quantum hydrodynamics is described. We show that the Gross-Pitaevskii equation applies when all the dipoles have the same orientation which does not change with time. A comparison of the equation for the electric dipole evolution with the equation for the magnetisation evolution is described. Dispersion of collective excitations in the dipolar BEC, either under the influence or not under the influence of an uniform external electric field, is considered using our method. We show that the evolution of the polarisation of the BEC leads to the formation of a novel type of collective excitations. A detailed description of the dispersion of the collective excitations is presented. We also consider the process of wave generation in the polarised BEC by means of a monoenergetic beam of neutral polarised particles. We compute possibilities for the generation of Bogoliubov and polarisation modes by the dipole beam.

Keywords

Cold Matter and Quantum Gas 

References

  1. 1.
    P. Koberle, H. Cartarius, T. Fabcic, J. Main, G. Wunner, New J. Phys. 11, 023017 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    L.D. Carr, D. DeMille, R.V. Krems, J. Ye, New J. Phys. 11, 055049 (2009)ADSCrossRefGoogle Scholar
  3. 3.
    T. Giamarchi, C. Ruegg, O. Tchernyshyov, Nat. Phys. 4, 198 (2008)CrossRefGoogle Scholar
  4. 4.
    K.-K. Ni, S. Ospelkaus, D.J. Nesbitt, J. Ye, D.S. Jin, Phys. Chem. Chem. Phys. 11, 9626 (2009)CrossRefGoogle Scholar
  5. 5.
    A. Griffin, Excitations in a Bose-Condensed Liquid (Cambridge University Press, New York, 1993)Google Scholar
  6. 6.
    N. Bogoliubov, J. Phys. 11, 23 (1947)Google Scholar
  7. 7.
    F. Dalfovo, S. Giorgini, L.P. Pitaevskii, S. Stringari, Rev. Mod. Phys. 71, 463 (1999)ADSCrossRefGoogle Scholar
  8. 8.
    H. Pu, W. Zhang, M. Wilkens, P. Meystre, Phys. Rev. Lett. 88, 070408 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    J. Steinhauer, R. Ozeri, N. Katz, N. Davidson, Phys. Rev. Lett. 88, 120407 (2002)ADSCrossRefGoogle Scholar
  10. 10.
    C. Menotti, S. Stringari, Phys. Rev. A 66, 043610 (2002)ADSCrossRefGoogle Scholar
  11. 11.
    A. Banerjee, M.P. Singh, Phys. Rev. A 66, 043609 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    H. Shibata, N. Yokoshi, S. Kurihara, Phys. Rev. A 75, 053615 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    M. Gupta, K. Rai Dastidar, Phys. Rev. A 81, 063631 (2010)ADSCrossRefGoogle Scholar
  14. 14.
    P.A. Andreev, L.S. Kuz’menkov, Phys. Rev. A 78, 053624 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    S. Stringari, Phys. Rev. Lett. 77, 2360 (1996)ADSCrossRefGoogle Scholar
  16. 16.
    G.M. Falco, A. Pelster, R. Graham, Phys. Rev. A 76, 013624 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    A. Banerjee, Phys. Rev. A 76, 023611 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    A. Banerjee, J. Phys. B 42, 235301 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    L. Santos, G.V. Shlyapnikov, M. Lewenstein, Phys. Rev. Lett. 90, 250403 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    D.H.J. O’Dell, S. Giovanazzi, G. Kurizki, Phys. Rev. Lett. 90, 110402 (2003)CrossRefGoogle Scholar
  21. 21.
    S. Giovanazzi, D.H.J. O’Dell, Eur. Phys. J. D 31, 439 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    U.R. Fischer, Phys. Rev. A 73, 031602(R) (2006)ADSCrossRefGoogle Scholar
  23. 23.
    C. Ticknor, R.M. Wilson, J.L. Bohn, Phys. Rev. Lett. 106, 065301 (2011)ADSCrossRefGoogle Scholar
  24. 24.
    P.A. Andreev, L.S. Kuzmenkov, M.I. Trukhanova, Phys. Rev. B 84, 245401 (2011)ADSCrossRefGoogle Scholar
  25. 25.
    Qiuzi Li, E.H. Hwang, S. Das Sarma, Phys. Rev. B 82, 235126 (2011)ADSCrossRefGoogle Scholar
  26. 26.
    S. Yi, L. You, Phys. Rev. A 61, 041604(R) (2000)ADSCrossRefGoogle Scholar
  27. 27.
    K. Goral, K. Rzazewski, T. Pfau, Phys. Rev. A 61, 051601(R) (2000)ADSCrossRefGoogle Scholar
  28. 28.
    L. Santos, G.V. Shlyapnikov, P. Zoller, M. Lewenstein, Phys. Rev. Lett. 85, 1791 (2000)ADSCrossRefGoogle Scholar
  29. 29.
    S. Yi, L. You, Phys. Rev. A 63, 053607 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    K. Goral, L. Santos, Phys. Rev. A 66, 023613 (2002)ADSCrossRefGoogle Scholar
  31. 31.
    P. Szankowski, M. Trippenbach, E. Infeld, G. Rowlands, Phys. Rev. Lett. 105, 125302 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    R.W. Cherng, E. Demler, Phys. Rev. Lett. 103, 185301 (2009)ADSCrossRefGoogle Scholar
  33. 33.
    T. Lahaye, C. Menotti, L. Santos, M. Lewenstein, T. Pfau, Rep. Prog. Phys. 72, 126401 (2009)ADSCrossRefGoogle Scholar
  34. 34.
    Yongyong Cai, M. Rosenkranz, Zhen Lei, Weizhu Bao, Phys. Rev. A 82, 043623 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    I. Sapina, T. Dahm, N. Schopohl, Phys. Rev. A 82, 053620 (2010)ADSCrossRefGoogle Scholar
  36. 36.
    R.M.W. van Bijnen, N.G. Parker, S.J.J.M.F. Kokkelmans, A.M. Martin, D.H.J. O’Dell, Phys. Rev. A 82, 033612 (2010)ADSCrossRefGoogle Scholar
  37. 37.
    S. Komineas, N.R. Cooper, Phys. Rev. A 75, 023623 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    R.M. Wilson, S. Ronen, J.L. Bohn, Phys. Rev. Lett. 104, 094501 (2010)ADSCrossRefGoogle Scholar
  39. 39.
    YuanYao Lin, Ray-Kuang Lee, Yee-Mou Kao, Tsin-Fu Jiang, Phys. Rev. A 78, 023629 (2008)ADSCrossRefGoogle Scholar
  40. 40.
    T.F. Jiang, W.C. Su, Phys. Rev. A 74, 063602 (2006)ADSCrossRefGoogle Scholar
  41. 41.
    G. Gligoric, A. Maluckov, M. Stepic, L. Hadzievski, B.A. Malomed, Phys. Rev. A 81, 013633 (2010)ADSCrossRefGoogle Scholar
  42. 42.
    T. Lahaye, T. Koch, B. Frohlich, M. Fattori, J. Metz, A. Griesmaier, S. Giovanazzi, T. Pfau, Nature 448, 672 (2007)ADSCrossRefGoogle Scholar
  43. 43.
    Y. Yamaguchi, T. Sogo, T. Ito, T. Miyakawa, Phys. Rev. A 82, 013643 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    Zhen-Kai Lu, G.V. Shlyapnikov, Phys. Rev. A 85, 023614 (2012)ADSCrossRefGoogle Scholar
  45. 45.
    A.-L. Gadsbolle, G.M. Bruun, Phys. Rev. A 85, 021604 (2012)ADSCrossRefGoogle Scholar
  46. 46.
    L.S. Kuz’menkov, S.G. Maksimov, Teor. i Mat. Fiz. 118, 287 (1999) [Theoretical and Mathematical Physics 118, 227 (1999)]CrossRefGoogle Scholar
  47. 47.
    P.A. Andreev, arXiv:1201.0779Google Scholar
  48. 48.
    P.A. Andreev, Int. J. Mod. Phys. B 27, 1350017 (2013)ADSCrossRefGoogle Scholar
  49. 49.
    Daw-Wei Wang, New J. Phys. 10, 053005 (2008)ADSCrossRefGoogle Scholar
  50. 50.
    L.P. Pitaevskii, E.M. Lifshitz, Physical Kinetics (kinetic theory) Course of Theoretical Physics (Pergamon, London, 1981), Vol. 10Google Scholar
  51. 51.
    A.A. Vlasov, J. Exp. Theor. Phys. 8, 291 (1938)zbMATHGoogle Scholar
  52. 52.
    A.A. Vlasov, Sov. Phys. Usp. 10, 721 (1968)ADSCrossRefGoogle Scholar
  53. 53.
    A.R.P. Lima, A. Pelster, Phys. Rev. A 81, 063629 (2010)ADSCrossRefGoogle Scholar
  54. 54.
    H. Gomi, T. Imai, A. Takahashi, M. Aihara, Phys. Rev. B 82, 035101 (2010)ADSCrossRefGoogle Scholar
  55. 55.
    L.M. Sieberer, M.A. Baranov, Phys. Rev. A 84, 063633 (2011)ADSCrossRefGoogle Scholar
  56. 56.
    R.M. Wilson, S.T. Rittenhouse, J.L. Bohn, New J. Phys. 14, 043018 (2012)ADSCrossRefGoogle Scholar
  57. 57.
    B. Fang, B.-G. Englert, Phys. Rev. A 83, 052517 (2011)ADSCrossRefGoogle Scholar
  58. 58.
    L. He, W. Hofstetter, Phys. Rev. A 83, 053629 (2011)ADSCrossRefGoogle Scholar
  59. 59.
    G. Quemener, J.L. Bohn, Phys. Rev. A 83, 012705 (2011)ADSCrossRefGoogle Scholar
  60. 60.
    R.M. Lutchyn, E. Rossi, S. Das Sarma, Phys. Rev. A 82, 061604(R) (2010)ADSCrossRefGoogle Scholar
  61. 61.
    R. Liao, J. Brand, Phys. Rev. A 82, 063624 (2010)ADSCrossRefGoogle Scholar
  62. 62.
    D. Baillie, P.B. Blakie, Phys. Rev. A 82, 033605 (2010)ADSCrossRefGoogle Scholar
  63. 63.
    K. Gillen-Christandl, B.D. Copsey, Phys. Rev. A 83, 023408 (2011)ADSCrossRefGoogle Scholar
  64. 64.
    A.R.P. Lima, A. Pelster, Phys. Rev. A 86, 063609 (2012)ADSCrossRefGoogle Scholar
  65. 65.
    H. Deng, H. Haug, Y. Yamamoto, Rev. Mod. Phys. 82, 1489 (2010)ADSCrossRefGoogle Scholar
  66. 66.
    H. Haug, A. Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, 2nd edn. (Springer, Berlin, 2008)Google Scholar
  67. 67.
    T. Kuhn, Theory of Transport Properties of Semiconductor Nanostructures, edited by E. Scholl (Springer, New York, 1997)Google Scholar
  68. 68.
    U. Vogl, M. Weitz, Nature 461, 70 (2009)ADSCrossRefGoogle Scholar
  69. 69.
    M. Sheik-Bahae, D. Seletskiy, Nat. Photon. 3, 680 (2009)ADSCrossRefGoogle Scholar
  70. 70.
    N.N. Rosanov, A.G. Vladimirov, D.V. Skryabin, W.J. Firth, Phys. Lett. A 293, 45 (2002)ADSCrossRefzbMATHGoogle Scholar
  71. 71.
    E. Braaten, H.-W. Hammer, S. Hermans, Phys. Rev. A 63, 063609 (2001)ADSCrossRefGoogle Scholar
  72. 72.
    E. Braaten, L. Platter, Phys. Rev. Lett. 100, 205301 (2008)ADSCrossRefGoogle Scholar
  73. 73.
    P.A. Andreev, L.S. Kuzmenkov, Mod. Phys. Lett. B 26, 1250152 (2012)MathSciNetADSCrossRefGoogle Scholar
  74. 74.
    A. Bret, M.-C. Firpo, C. Deutsch, Phys. Rev. E 70, 046401 (2004)ADSCrossRefGoogle Scholar
  75. 75.
    P.A. Andreev, L.S. Kuz’menkov, Phys. At. Nucl. 71, 1724 (2008)CrossRefGoogle Scholar
  76. 76.
    P.A. Andreev, L.S. Kuz’menkov, PIERS Proceedings, Marrakesh, Morocco, 2011, p. 1047Google Scholar
  77. 77.
    P.A. Andreev, L.S. Kuzmenkov, Int. J. Mod. Phys. B 26, 1250186 (2012)MathSciNetADSCrossRefGoogle Scholar
  78. 78.
    P.A. Andreev, L.S. Kuzmenkov, arXiv:1106.0822Google Scholar
  79. 79.
    P.A. Andreev, Russ. Phys. J. 54, 1360 (2012)CrossRefzbMATHGoogle Scholar
  80. 80.
    I.A. Akhiezer, Plasma Electrodynamics (Pergamon Press, 1975)Google Scholar
  81. 81.
    Cheng Chin, R. Grimm, P. Julienne, E. Tiesinga, Rev. Mod. Phys. 82, 1225 (2010)ADSCrossRefGoogle Scholar
  82. 82.
    I. Bloch, J. Dalibard, W. Zwerger, Rev. Mod. Phys. 80, 885 (2008)ADSCrossRefGoogle Scholar
  83. 83.
    S. Yi, L. You, Phys. Rev. A 66, 013607 (2002)ADSCrossRefGoogle Scholar
  84. 84.
    L.D. Landau, E.M. Lifshitz, The Classical Theory of Fields (Butterworth-Heinemann, 1975)Google Scholar
  85. 85.
    V.Yu. Lazur, S.I. Myhalyna, O.K. Reity, Phys. Rev. A 81, 062707 (2010)ADSCrossRefGoogle Scholar
  86. 86.
    C. Eberlein, S. Giovanazzi, D.H.J. O’Dell, Phys. Rev. A 71, 033618 (2005)ADSCrossRefGoogle Scholar
  87. 87.
    V.B. Berestetskii, E.M. Lifshitz, L.P. Pitaevskii, Quantum Electrodynamics, 2nd edn. (Butterworth-Heinemann, 1982), Vol. 4Google Scholar
  88. 88.
    G. Breit, Phys. Rev. 34, 553 (1929)MathSciNetADSCrossRefzbMATHGoogle Scholar
  89. 89.
    L.S. Kuz’menkov, S.G. Maksimov, V.V. Fedoseev, Theor. Math. Fiz. 126, 136 (2001) [Theoretical and Mathematical Physics 126, 110 (2001)]MathSciNetGoogle Scholar
  90. 90.
    S. Goldstein, Phys. Today 51, 42 (1998)CrossRefGoogle Scholar
  91. 91.
    S. Goldstein, Phys. Today 51, 38 (1998)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of General Physics, Physics FacultyMoscow State UniversityMoscowRussian Federation
  2. 2.Department of Theoretical Physics, Physics FacultyMoscow State UniversityMoscowRussian Federation

Personalised recommendations