Advertisement

Classical microscopic theory of polaritons in ionic crystals

  • Alessio Lerose
  • Alessandro Sanzeni
  • Andrea CaratiEmail author
  • Luigi Galgani
Regular Article

Abstract

It is well known that the optical branches of the dispersion curves of ionic crystals exhibit a polaritonic feature, i.e., a splitting about the electromagnetic dispersion line ω = ck. This phenomenon is considered to be due to the retardation of the electromagnetic forces among the ions. However, the problem is usually discussed at a phenomenological level, through the introduction of a macroscopic polarization field, so that a microscopic treatment is apparently lacking. A microscopic first principles deduction is given here, in a classical frame, for a model in which the ions are dealt with as point charges. At a qualitative level it is made apparent that retardation is indeed responsible for the splitting. A quantitative comparison with the empirical data for LiF is also given, showing a fairly good agreement over the whole Brillouin zone.

Keywords

Optical Phenomena and Photonics 

References

  1. 1.
    M. Born, K. Huang, Dynamical Theory of Crystal Lattices (Oxford University Press, Oxford, 1954), p. 91 Google Scholar
  2. 2.
    U. Fano, Phys. Rev. 103, 1202 (1956) ADSCrossRefGoogle Scholar
  3. 3.
    J.J. Hopfield, Phys. Rev. 112, 1555 (1958) ADSCrossRefzbMATHGoogle Scholar
  4. 4.
    G. Grosso, G. Pastori Parravicini, Solid State Physics (Academic Press, San Diego and London, 2000), p. 239 Google Scholar
  5. 5.
    J.A. Wheeler, R.P. Feynman, Rev. Mod. Phys. 17, 157 (1945) ADSCrossRefGoogle Scholar
  6. 6.
    J.D. Jackson, Classical Electrodynamics (John Wiley & Sons, New York and London, 1998) Google Scholar
  7. 7.
    P.P. Ewald, Ann. Phys. 54, 519 (1917) CrossRefGoogle Scholar
  8. 8.
    P.P. Ewald, Ann. Phys. 64, 253 (1921) CrossRefzbMATHGoogle Scholar
  9. 9.
    C.W. Oseen, Physik. Zeitschr. 17, 341 (1916) Google Scholar
  10. 10.
    M. Born, in Optik (Springer, Berlin, 1933), p. 431 Google Scholar
  11. 11.
    M. Born, E. Wolf, in Principles of Optics (Pergamon Press, Oxford, 1959), p. 79 Google Scholar
  12. 12.
    A.N. Tikhonov, A.A. Samarskij, in Equations of Mathematical Physics (Pergamon Press, Oxford, 1963), p. 491 Google Scholar
  13. 13.
    P. Gibbon, G. Sutmann, in Quantum Simulation of Complex Many-Body Systems: from Theory to Algorithms, edited by J. Grotendorst, D. Marx, A. Muramatsu, NIC Series 10 (John von Neumann Institute for Computing, Jülich, 2002), p. 467 Google Scholar
  14. 14.
    A. Carati, F. Benfenati, A. Maiocchi, M. Zuin, L. Galgani, Chaos 24, 013118 (2014) ADSCrossRefGoogle Scholar
  15. 15.
    A. Carati, L. Galgani, Nuovo Cim. B 118, 839 (2003) ADSGoogle Scholar
  16. 16.
    M. Marino, A. Carati, L. Galgani, Ann. Phys. 322, 799 (2007) ADSzbMATHMathSciNetGoogle Scholar
  17. 17.
    G. Dolling, H.G. Smith, R.M. Nicklow, P.R. Vijayaraghavan, M.K. Wilkinson, Phys. Rev. 168, 970 (1968) ADSGoogle Scholar
  18. 18.
    K. Hisano, Y. Okamoto, O. Matumura, J. Phys. Soc. Jpn 28, 2 (1970) Google Scholar
  19. 19.
    M. Born, in Problems of Atomic Dynamics (Dover, New York, 2004), p. 163 Google Scholar
  20. 20.
    P.A.M. Dirac, Proc. Roy. Soc. A 167, 148 (1938) ADSGoogle Scholar
  21. 21.
    M. Marino, Ann. Phys. 301, 85 (2002) ADSzbMATHGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alessio Lerose
    • 1
  • Alessandro Sanzeni
    • 2
  • Andrea Carati
    • 3
    Email author
  • Luigi Galgani
    • 3
  1. 1.School of Physics, Università degli Studi di MilanoMilanoItaly
  2. 2.Department of PhysicsUniversità degli Studi di MilanoMilanoItaly
  3. 3.Department of MathematicsUniversità degli Studi di MilanoMilanoItaly

Personalised recommendations