Simulated optical properties of noble metallic nanopolyhedra with different shapes and structures

Regular Article

Abstract

The optical properties of nanostructured architectures are highly sensitive to their compositions, structures, dimensions, geometries and embedding mediums. Nanopolyhedra, including homogeneous metal nanoparticles and core-shell structures, have unique optical properties. In the beginning of this study, Discrete Dipole Approximation (DDA) method has been introduced. Then the simulated extinction spectra of single-component metal nanoparticles and Au@Ag polyhedra were calculated using both Mie and DDA methods. The influence of morphology and components on the optical response is discussed and well-supported by previously published experimental results. It is observed that the Localized Surface Plasmon Resonance peaks are mainly decided by sharp vertexes and symmetry of noble metallic polyhedra, as well as the structure of the Au@Ag core-shell nanoparticles.

Keywords

Clusters and Nanostructures 

References

  1. 1.
    M. Faraday, Philos. Trans. R. Soc. London 147, 145 (1857)CrossRefGoogle Scholar
  2. 2.
    K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz, J. Phys. Chem. B 107, 668 (2003)CrossRefGoogle Scholar
  3. 3.
    G. Mie, Ann. Phys. 330, 377 (1908)CrossRefGoogle Scholar
  4. 4.
    M.J. Banholzer, N. Harris, J.E. Millstone, G.C. Schatz, C.A. Mirkin, J. Phys. Chem. C 114, 7521 (2010)CrossRefGoogle Scholar
  5. 5.
    A.C. Lind, J.M. Greenber, J. Appl. Phys. 37, 3195 (1966)ADSCrossRefGoogle Scholar
  6. 6.
    A.L. Gonzalez, C. Noguez, G.P. Ortiz, G. Rodríguez-Gattorno, J. Phys. Chem. B 109, 17512 (2005)CrossRefGoogle Scholar
  7. 7.
    A.L. Gonzalez, C. Noguez, J. Comput. Theor. Nanosci. 4, 231 (2007)Google Scholar
  8. 8.
    A.L. Gonzalez, J.A. Reyes-Esqueda, C. Noguez, J. Phys. Chem. C 112, 7356 (2008)CrossRefGoogle Scholar
  9. 9.
    W. Hermoso, T.V. Alves, F.R. Ornellas, P.H.C. Camargo, Eur. Phys. J. D 66, 135 (2012)ADSCrossRefGoogle Scholar
  10. 10.
    T.V. Alves, W. Hermoso, F.R. Ornellas, P.H.C. Camargo, Chem. Phys. Lett. 544, 64 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M. Alsawafta, M. Wahbeh, V.V. Truong, J. Nanomater. 2012, 283230 (2012)Google Scholar
  12. 12.
    P. Yang, H. Portales, M.P. Pileni, J. Chem. Phys. 134, 024507 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    A. Tao, P. Sinsermsuksakul, P.D. Yang, Angew. Chem. Int. Ed. 45, 4597 (2006)CrossRefGoogle Scholar
  14. 14.
    L. Yuan, J. Zhu, Y.J. Ren, S.W. Bai, J. Nanopart. Res. 13, 6305 (2011)CrossRefGoogle Scholar
  15. 15.
    M.P. Pileni, J. Phys. Chem. C 111, 9019 (2007)CrossRefGoogle Scholar
  16. 16.
    A.L. Aden, M. Kerker, J. Appl. Phys. 22, 1242 (1951)ADSCrossRefMATHMathSciNetGoogle Scholar
  17. 17.
    R. Bhandari, Appl. Opt. 24, 1960 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    V. Twersky, J. Appl. Phys. 23, 407 (1952)ADSCrossRefMATHMathSciNetGoogle Scholar
  19. 19.
    V. Twersky, J. Acoust. Soc. Am. 24, 42 (1952)ADSCrossRefGoogle Scholar
  20. 20.
    S. Stein, Quart. Appl. Math. 19, 15 (1961)MATHMathSciNetGoogle Scholar
  21. 21.
    J.H. Bruning, Y.T. Lo, IEEE Trans. Ant. Propag. 19, 378 (1971)ADSCrossRefGoogle Scholar
  22. 22.
    J.H. Bruning, Y.T. Lo, IEEE Trans. Ant. Propag. 19, 391 (1971)ADSCrossRefGoogle Scholar
  23. 23.
    F. Borghese, P. Denti, R. Saija, O.I. Sindoni, J. Opt. Soc. Am. A 9, 1327 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    H. Du, Appl. Opt. 43, 1951 (2004)ADSCrossRefGoogle Scholar
  25. 25.
    P. Ovidio, P. Pablo, P. Umapada, Int. J. Spectrosc. 2011, 583743 (2011)Google Scholar
  26. 26.
    W. Yang, Appl. Opt. 42, 1710 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    H. Devoe, J. Chem. Phys. 41, 393 (1964)ADSCrossRefGoogle Scholar
  28. 28.
    E.M. Purcell, C.R. Pennypacker, Astrophys. J. 186, 705 (1973)ADSCrossRefGoogle Scholar
  29. 29.
    B.T. Draine, Astrophys. J. 333, 848 (1988)ADSCrossRefGoogle Scholar
  30. 30.
    J.J. Goodman, B.T. Draine, P.J. Flatau, Opt. Lett. 16, 1198 (1991)ADSCrossRefGoogle Scholar
  31. 31.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A 11, 1491 (1994)ADSCrossRefGoogle Scholar
  32. 32.
    M.J. Collinge, B.T. Draine, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 21, 2023 (2004)ADSCrossRefGoogle Scholar
  33. 33.
    B.T. Draine, P.J. Flatau, J. Opt. Soc. Am. A Opt. Image Sci. Vis. 25, 2693 (2008)ADSCrossRefGoogle Scholar
  34. 34.
    B.T. Draine, J. Goodman, Astrophys. J. 405, 685 (1993)ADSCrossRefGoogle Scholar
  35. 35.
    P.J. Flatau, Opt. Lett. 22, 1205 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    P. Flatau, Opt. Express 12, 3149 (2004)ADSCrossRefGoogle Scholar
  37. 37.
    P.B. Johnson, R. Christy, Phys. Rev. B 6, 4370 (1972)ADSCrossRefGoogle Scholar
  38. 38.
    B.T. Draine, P.J. Flatau, User Guide for the Discrete Dipole Approximation Code DDSCAT 7.2 (2012)Google Scholar
  39. 39.
    D. Seo, C.I. Yoo, J.C. Park, S.M. Park, S. Ryu, H. Song, Angew. Chem. Int. Ed. 47, 763 (2008)CrossRefGoogle Scholar
  40. 40.
    Y.H. Lee, H. Chen, Q.-H. Xu, J. Wang, J. Phys. Chem. C 115, 7997 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Portales, N. Goubet, L. Saviot, P. Yang, S. Sirotkin, E.N. Duval, A. Mermet, M.-P. Pileni, ACS Nano 4, 3489 (2010)CrossRefGoogle Scholar
  42. 42.
    J. Rodriguez-Fernandez, C. Novo, V. Myroshnychenko, A.M. Funston, A. Sanchez-Iglesias, I. Pastoriza-Santos, J. Perez-Juste, F.J. Garciìa de Abajo, L.M. Liz-Marzan, P. Mulvaney, J. Phys. Chem. C 113, 18623 (2009)CrossRefGoogle Scholar
  43. 43.
    D. Seo, C.I. Yoo, I.S. Chung, S.M. Park, S. Ryu, H. Song, J. Phys. Chem. C 112, 2469 (2008)CrossRefGoogle Scholar
  44. 44.
    R.G.N. Julien, M. Delphine, L. Frederic, C. Emmanuel, L. Jean, B. Christophe, C. Frederic, M. Alexis, P. Michel, P. Stephane, Nanotechnology 23, 145707 (2012)CrossRefGoogle Scholar
  45. 45.
    N. Grillet, D. Manchon, F. Bertorelle, C. Bonnet, M. Broyer, E. Cottancin, J. Lermé, M. Hillenkamp, M. Pellarin, ACS Nano 5, 9450 (2011)CrossRefGoogle Scholar
  46. 46.
    Y. Ma, W. Li, E.C. Cho, Z. Li, T. Yu, J. Zeng, Z. Xie, Y. Xia, ACS Nano 4, 6725 (2010)CrossRefGoogle Scholar
  47. 47.
    M.A. Mahmoud, M.A. El-Sayed, J. Phys. Chem. C 112, 14618 (2008)CrossRefGoogle Scholar
  48. 48.
    M. Quinten, Appl. Phys. B Lasers Opt. 73, 245 (2001)ADSCrossRefGoogle Scholar
  49. 49.
    C. Noguez, J. Phys. Chem. C 111, 3806 (2007)CrossRefGoogle Scholar
  50. 50.
    A.J. Haes, C.L. Haynes, A.D. McFarland, G.C. Schatz, R.R. Van Duyne, S.L. Zou, MRS Bull. 30, 368 (2005)CrossRefGoogle Scholar
  51. 51.
    J.P. Kottmann, O.J.F. Martin, D.R. Smith, S. Schultz, Phys. Rev. B 64, 235402 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    J. Aizpurua, G.W. Bryant, L.J. Richter, F.J.G. de Abajo, B.K. Kelley, T. Mallouk, Phys. Rev. B 71, 235420 (2005)ADSCrossRefGoogle Scholar
  53. 53.
    T.R. Jensen, G.C. Schatz, R.P. Van Duyne, J. Phys. Chem. B 103, 2394 (1999)CrossRefGoogle Scholar
  54. 54.
    J. Zhou, J. An, B. Tang, S. Xu, Y. Cao, B. Zhao, W. Xu, J. Chang, J.R. Lombardi, Langmuir 24, 10407 (2008)CrossRefGoogle Scholar
  55. 55.
    C. Li, K.L. Shuford, M. Chen, E.J. Lee, S.O. Cho, ACS Nano 2, 1760 (2008)CrossRefGoogle Scholar
  56. 56.
    C.M. Cobley, M. Rycenga, F. Zhou, Z.Y. Li, Y.N. Xia, Angew. Chem. Int. Ed. 48, 4824 (2009)CrossRefGoogle Scholar
  57. 57.
    G. Park, D. Seo, J. Jung, S. Ryu, H. Song, J. Phys. Chem. C 115, 9417 (2011)CrossRefGoogle Scholar
  58. 58.
    J. Gong, F. Zhou, Z. Li, Z. Tang, Langmuir 28, 8959 (2012)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Materials ScienceFudan UniversityShanghaiP.R. China
  2. 2.Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and Advanced Materials LaboratoryFudan UniversityShanghaiP.R. China

Personalised recommendations