Advertisement

Stabilities, aromaticity, infrared spectra, and optical properties of exohedral fullerene derivatives C76X18(X = H, F, Cl, and Br)

  • Chunmei TangEmail author
  • Shengwei Chen
  • Weihua Zhu
  • Aimei Zhang
  • Kaixiao Zhang
  • Mingyi Liu
Regular Article

Abstract

Density functional study is performed on the stabilities, aromaticity, infrared spectra, and optical properties of exohedral fullerene derivatives C76X18(X = H, F, Cl, and Br). The bond dissociation energy and energy gap between HOMO and LUMO of C76H18 are larger than those of the isolated C76F18 and C76Cl18, indicating the possibility for synthesising C76H18 from the viewpoint of thermodynamics and kinetics. C76X18(X = H, F, Cl, and Br) show strong aromaticity, suggesting their stabilities are correlative with the conjugation. The tensors of static linear polarisabilities, mean static linear polarisabilities, polarisability anisotropy, and first-order hyperpolarisabilities of C76X18(X = F, Cl, and Br) increase as X goes from F to Br. We rationalise the nonlinear properties by studying the low-energy optical absorption band obtained by employing time-dependent density functional theory.

Keywords

Molecular Physics and Chemical Physics 

References

  1. 1.
    H.W. Kroto, J.R. Health, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature 318, 162 (1985)ADSCrossRefGoogle Scholar
  2. 2.
    W. Kratschmer, L.D. Lamb, K. Fostiropoulos, D.R. Huffman, Nature 347, 354 (1990)ADSCrossRefGoogle Scholar
  3. 3.
    M.G. Low, P.W. Kincade, Nature 318, 62 (1985)ADSCrossRefGoogle Scholar
  4. 4.
    D.E. Manolopoulos, J. Chem. Soc. Faraday Trans. 87, 2861 (1991)CrossRefGoogle Scholar
  5. 5.
    G. Orlandi, F. Zerbetto, P.W. Fowler, D.E. Manolopoulos, Chem. Phys. Lett. 208, 441 (1993)ADSCrossRefGoogle Scholar
  6. 6.
    F. Diederich, R.L. Whetten, Acc. Chem. Res. 25, 119 (1992)CrossRefGoogle Scholar
  7. 7.
    R. Ettl, I. Chao, F. Diederich, R.L. Whetten, Nature 353, 149 (1991)ADSCrossRefGoogle Scholar
  8. 8.
    A. Koshio, M. Inakuma, T. Sugai, H. Shinohara, J. Am. Chem. Soc. 122, 398 (2000)CrossRefGoogle Scholar
  9. 9.
    S.Y. Xie, F. Gao, X. Lu, R.B. Huang, C.R. Wang, X. Zhang, M.L. Liu, S.L. Deng, L.S. Zheng, Science 304, 699 (2004)CrossRefGoogle Scholar
  10. 10.
    C.R. Wang, Z.Q. Shi, L.J. Wan, X. Lu, L. Dunsch, C.Y. Shu, Y.L. Tang, H. Shinohara, J. Am. Chem. Soc. 128, 6605 (2006)CrossRefGoogle Scholar
  11. 11.
    R. Tayer, private communication (1999)Google Scholar
  12. 12.
    K.S. Simeonov, K.Y. Amsharov, M. Jansen, Chem. Int. Ed. 46, 8419 (2007)CrossRefGoogle Scholar
  13. 13.
    Q.B. Yan, Q.R. Zheng, G. Su, J. Phys. Chem. C 111, 549 (2007)CrossRefGoogle Scholar
  14. 14.
    C.M. Tang, W.H. Zhu, K.M. Deng, J. Mol. Struct. Theochem 909, 43 (2009)CrossRefGoogle Scholar
  15. 15.
    Y.F. Chang, J.P. Hong, H. Sun, Z. An, R.S. Wang, J. Chem. Phys. 123, 094305 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    B. Hong, Y.F. Chang, Y.Q. Qiu, H. Sun, Z.M. Su, R.S. Wang, J. Chem. Phys. 124, 144108 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    E. Artacho, D. Sánchez-Portal, P. Ordejón, A. García, J.M. Soler, Phys. Stat. Sol. (b) 215, 809 (1999)ADSCrossRefGoogle Scholar
  18. 18.
    B. Delley, J. Chem. Phys. 92, 508 (1990)ADSCrossRefGoogle Scholar
  19. 19.
    J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)ADSCrossRefGoogle Scholar
  20. 20.
    P. Hohenberg, W. Kohn, Phys. Rev. 136, B864 (1964)ADSCrossRefMathSciNetGoogle Scholar
  21. 21.
    C.H. Choi, M. Kertesz, L. Mihaly, J. Phys. Chem. A 104, 102 (2000)CrossRefGoogle Scholar
  22. 22.
    C.S. Yannoni, P.P. Bernier, D.S. Bethune, G. Meijer, J.R. Salem, J. Am. Chem. Soc. 113, 3190 (1991)CrossRefGoogle Scholar
  23. 23.
    S.Z. Liu, Y.J. Lu, M.M. Kappes, J.A. Ibers, Science 254, 408 (1991)ADSCrossRefGoogle Scholar
  24. 24.
    G.K. Rollefson, H.W. Dodgen, J. Chem. Phys. 12, 107 (1944)ADSCrossRefGoogle Scholar
  25. 25.
    R.J. Li, Z.R. Li, D. Wu, X.Y. Hao, Y. Li, B.Q. Wang, F.M. Tao, C.C. Sun, Chem. Phys. Lett. 372, 893 (2003)ADSCrossRefGoogle Scholar
  26. 26.
    L. Xiang, Y.G. Liu, A.G. Jiang, D.Y. Huang, Chem. Phys. Lett. 338, 167 (2001)ADSCrossRefGoogle Scholar
  27. 27.
    B. Delley, J. Phys. Condens. Matter 22, 384208 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    O. Gritsenko, E.J. Baerends, J. Chem. Phys. 121, 655 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    Y. Rao, Y.M. Lei, X.Y. Cui, Z.W. Liu, F.Y. Chen, J. Alloys Compd. 565, 50 (2013)CrossRefGoogle Scholar
  30. 30.
    D.L. Chen, W.Q. Tian, J.K. Feng, C.C. Sun, J. Phys. Chem. B 111, 5167 (2007)CrossRefGoogle Scholar
  31. 31.
    I.S. Neretin, K.A. Lyssenko, M.Y. Antipin, Y.L. Slovokhotov, O.V. Boltalina, P.A. Troshin, A.Y. Lukonin, L.N. Sidorov, R. Taylor, Angew. Chem. Int. Ed. 39, 3273 (2000)CrossRefGoogle Scholar
  32. 32.
    S.I. Troyanov, N.B. Shustova, A.A. Popov, L.N. Sidorov, E. Kemnitz, Angew. Chem. Int. Ed. 44, 432 (2005)CrossRefGoogle Scholar
  33. 33.
    P.A. Troshin, R.N. Lyubovskaya, I.N. Ioffe, N.B. Shustova, E. Kemnitz, S.I. Troyanov, Angew. Chem. Int. Ed. 44, 234 (2004)CrossRefGoogle Scholar
  34. 34.
    J. Damaison, L. Margulès, J.E. Boggs, Struct. Chem. 14, 159 (2003)CrossRefGoogle Scholar
  35. 35.
    N.I. Denisenko, S.I. Troyanov, A.A. Popov, I.V. Kuvychko, B. Zemva, E. Kemnitz, S.H. Strauss, O.V. Boltalina, J. Am. Chem. Soc. 126, 1618 (2004)CrossRefGoogle Scholar
  36. 36.
    Z.F. Chen, C.S. Wannere, C. Corminboeuf, R. Puchta, P.V.R. Schleyer, Chem. Rev. 105, 3842 (2005)CrossRefGoogle Scholar
  37. 37.
    M. Saunders, H.A. Jimenez-Vazquez, R.J. Cross, W.E. Billups, C. Gesenberg, A. Gonzalez, R.C. Haddon, F. Diederich, A. Herrmann, J. Am. Chem. Soc. 117, 9305 (1995)CrossRefGoogle Scholar
  38. 38.
    P.V.R. Schleyer, C. Maerker, A. Dransfeld, H.J. Jiao, N.J.R.v.E. Hommes, J. Am. Chem. Soc. 118, 6317 (1996)CrossRefGoogle Scholar
  39. 39.
    R.M. Silverstein, G.C. Bassler, T.C. Morrill, Spectrometric Identification of Organic Compounds, 5th edn. (Wiley, New York, 1991), p. 103Google Scholar
  40. 40.
    S.N. Ege, Organic Chemistry (D.C. Heath, Lexington, 1984)Google Scholar
  41. 41.
    M. Bianchetti, P.F. Buonsante, F. Ginelli, H.E. Roman, R.A. Broglia, F. Alasia, Phys. Rep. 357, 459 (2002)ADSCrossRefGoogle Scholar
  42. 42.
    K. Zagorodniy, M. Taut, H. Hermann, Phys. Rev. A 73, 054501 (2006)ADSCrossRefGoogle Scholar
  43. 43.
    K.R.S. Chandrakumar, T.K. Ghanty, S.K. Ghosh, J. Chem. Phys. 120, 6487 (2004)ADSCrossRefGoogle Scholar
  44. 44.
    A. Banerjee, A. Chakrabarti, T.K. Ghanty, J. Chem. Phys. 127, 134103 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    R.H. Xie, G.W. Bryant, V.H. Smith, Chem. Phys. Lett. 368, 486 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    J.L. Oudar, J. Chem. Phys. 67, 446 (1977)ADSCrossRefGoogle Scholar
  47. 47.
    Y. Yamaguchi, J. Chem. Phys. 122, 184702 (2005)ADSCrossRefGoogle Scholar
  48. 48.
    Y. Yamaguchi, J. Chem. Phys. 120, 7963 (2004)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Chunmei Tang
    • 1
    Email author
  • Shengwei Chen
    • 1
  • Weihua Zhu
    • 1
  • Aimei Zhang
    • 1
  • Kaixiao Zhang
    • 1
  • Mingyi Liu
    • 1
  1. 1.College of ScienceHohai UniversityNanjing, JiangsuP.R. China

Personalised recommendations