Static electric dipole polarizabilities for isoelectronic sequences. II. Open-shell S states

Regular Article

Abstract

We present static electric dipole polarizabilities αd(Z,N) from numerical nonrelativistic restricted Hartree-Fock (RHF) finite-field calculations for high-spin open-shell S states (L = 0) of atoms and isoelectronic ions with N ≤ 55 electrons. All these S states result from one or more half-filled shells. For eight isoelectronic sequences, those with N = 3, 7, 11, 15, 23, 29, 33 or 41 electrons where the electronic ground state of the neutral or nearly neutral members is conserved upon increase of the nuclear charge number Z, polarizability data are given for ions with charge number Q = ZN up to Q = 90. In addition, these data are represented in terms of rational functions of Q (with absolute value of the relative error of the fit always below 4%). The rational functions are comparable to the classical nonrelativistic result αd(Z,1) = 4.5 / Z4 = 4.5 / (Q + 1)4 for the polarizability of the 2S ground state of a hydrogen-like system. Our results also contribute to constitute a reference database (i) for algebraic approaches relying on basis functions, and (ii) for the discussion of relativistic and correlation effects on polarizabilities along isoelectronic sequences.

Keywords

Atomic Physics 

Supplementary material

10053_2013_568_MOESM1_ESM.pdf (65 kb)
Supplementary material, approximately 64.8 KB.

References

  1. 1.
    K.D. Bonin, V.V. Kresin, Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (World Scientific, Singapore, 1997)Google Scholar
  2. 2.
    P. Schwerdtfeger, in Atoms, Molecules and Clusters in Electric Fields, Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (Imperial College Press, London, 2006), p. 1Google Scholar
  3. 3.
    A.J. Thakkar, C. Lupinetti, in Atoms, Molecules and Clusters in Electric Fields, Theoretical Approaches to the Calculation of Electric Polarizability, edited by G. Maroulis (Imperial College Press, London, 2006), p. 505Google Scholar
  4. 4.
    J. Mitroy, M.S. Safronova, C.W. Clark, J. Phys. B 43, 202001 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    L.G. Gray, X. Sun, K.B. MacAdam, Phys. Rev. A 38, 4985 (1988)ADSCrossRefGoogle Scholar
  6. 6.
    R.A. Komara, M.A. Gearba, C.W. Fehrenbach, S.R. Lundeen, J. Phys. B 38, S87 (2005)ADSCrossRefGoogle Scholar
  7. 7.
    K.L. Burns, D. Bellert, A.W.-K. Leung, W.H. Breckenridge, J. Chem. Phys. 114, 2996 (2001)ADSCrossRefGoogle Scholar
  8. 8.
    D. Bellert, W.H. Breckenridge, Chem. Rev. 102, 1595 (2002)CrossRefGoogle Scholar
  9. 9.
    Atomic and Molecular Beams, edited by R. Campargue (Springer, Berlin, 2001)Google Scholar
  10. 10.
    Ion Beams in Nanoscience and Technology, edited by R. Hellborg, H.J. Whitlow, Y. Zhang (Springer, Berlin, 2009)Google Scholar
  11. 11.
    Materials Science with Ion Beams, edited by H. Bernas (Springer, Berlin, 2010)Google Scholar
  12. 12.
    M. Cohen, Proc. R. Soc. London A 293, 359 (1966)ADSCrossRefGoogle Scholar
  13. 13.
    M. Cohen, G.W.F. Drake, Proc. Phys. Soc. 92, 23 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    M. Cohen, Adv. At. Mol. Phys. 25, 195 (1988)ADSCrossRefGoogle Scholar
  15. 15.
    H.D. Cohen, C.C.J. Roothaan, J. Chem. Phys. 43, S34 (1965)ADSCrossRefGoogle Scholar
  16. 16.
    T. Voegel, J. Hinze, F. Tobin, J. Chem. Phys. 70, 1107 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    J. Stiehler, J. Hinze, J. Phys. B 28, 4055 (1995)ADSCrossRefGoogle Scholar
  18. 18.
    J. Stiehler, Ph.D. thesis, Bielefeld University, 1995Google Scholar
  19. 19.
    V. Koch, D. Andrae, Int. J. Quantum Chem. 111, 891 (2011)CrossRefGoogle Scholar
  20. 20.
    F. Biegler-König, J. Hinze, J. Comput. Phys. 67, 290 (1986)ADSMATHCrossRefGoogle Scholar
  21. 21.
    D. Andrae, J. Hinze, Int. J. Quantum Chem. 63, 65 (1997)CrossRefGoogle Scholar
  22. 22.
    P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 77, 1 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    J. Kobus, Comput. Lett. 3, 71 (2007)CrossRefGoogle Scholar
  24. 24.
    S. Fraga, J. Karwowski, K.M.S. Saxena, At. Data Nucl. Data Tables 12, 467 (1973)ADSCrossRefGoogle Scholar
  25. 25.
    S. Fraga, J. Karwowski, K.M.S. Saxena, Handbook of Atomic Data (Elsevier, Amsterdam, 1976), p. 319Google Scholar
  26. 26.
    S. Fraga, J. Muszyńska, Atoms in External Fields (Elsevier, Amsterdam, 1981), p. 53Google Scholar
  27. 27.
    J.A. Pople, P. Schofield, Philos. Mag. 2, 591 (1957)ADSMATHCrossRefGoogle Scholar
  28. 28.
    A.J. Sadlej, M. Urban, J. Mol. Struct. Theochem 234, 147 (1991)CrossRefGoogle Scholar
  29. 29.
    I. Miadoková, V. Kellö, A.J. Sadlej, Theor. Chem. Acc. 96, 166 (1997)CrossRefGoogle Scholar
  30. 30.
    I.S. Lim, M. Pernpointner, M. Seth, J.K. Laerdahl, P. Schwerdtfeger, P. Neogrády, M. Urban, Phys. Rev. A 60, 2822 (1999)ADSCrossRefGoogle Scholar
  31. 31.
    B. Kundu, D. Ray, P.K. Mukherjee, Phys. Rev. A 34, 62 (1986)ADSCrossRefGoogle Scholar
  32. 32.
    G. Maroulis, Chem. Phys. Lett. 334, 207 (2001)ADSCrossRefGoogle Scholar
  33. 33.
    V. Kellö, A.J. Sadlej, K. Faegri, Phys. Rev. A 47, 1715 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    I.S. Lim, P. Schwerdtfeger, Phys. Rev. A 70, 062501 (2004)ADSCrossRefGoogle Scholar
  35. 35.
    A.K. Das, D. Ray, P.K. Mukherjee, Theor. Chim. Acta 82, 223 (1992)CrossRefGoogle Scholar
  36. 36.
    S. Canuto, M.A. Castro, P.K. Mukherjee, Phys. Rev. A 49, 3515 (1994)ADSCrossRefGoogle Scholar
  37. 37.
    R. Medeiros, M.A. Castro, O.A.V. Amaral, Phys. Rev. A 54, 3661 (1996)ADSCrossRefGoogle Scholar
  38. 38.
    K. Andersson, A.J. Sadlej, Phys. Rev. A 46, 2356 (1992)ADSCrossRefGoogle Scholar
  39. 39.
    Z. Benkova, A.J. Sadlej, R.E. Oakes, S.E.J. Bell, J. Comput. Chem. 26, 145 (2005)CrossRefGoogle Scholar
  40. 40.
    A. Baranowska, A.J. Sadlej, J. Comput. Chem. 31, 552 (2010)Google Scholar
  41. 41.
    A.J. Sadlej, Theor. Chim. Acta 79, 123 (1991)CrossRefGoogle Scholar
  42. 42.
    Z. Benkova, A.J. Sadlej, R.E. Oakes, S.E.J. Bell, Theor. Chem. Acc. 113, 238 (2005)CrossRefGoogle Scholar
  43. 43.
    A.J. Sadlej, Theor. Chim. Acta 81, 339 (1992)CrossRefGoogle Scholar
  44. 44.
    P.W. Fowler, A.J. Sadlej, Phys. Rev. A 43, 6386 (1991)ADSCrossRefGoogle Scholar
  45. 45.
    A. Baranowska, M. Siedlecka, A.J. Sadlej, Theor. Chem. Acc. 118, 959 (2007)CrossRefGoogle Scholar
  46. 46.
    A.A. Buchachenko, Proc. R. Soc. London A 467, 1310 (2011)ADSCrossRefGoogle Scholar
  47. 47.
    P. Schwerdtfeger, G.A. Bowmaker, J. Chem. Phys. 100, 4487 (1994)ADSCrossRefGoogle Scholar
  48. 48.
    P. Neogrády, V. Kellö, M. Urban, A.J. Sadlej, Theor. Chim. Acta 93, 101 (1996)CrossRefGoogle Scholar
  49. 49.
    J. Kłos, J. Chem. Phys. 123, 024308 (2005)ADSCrossRefGoogle Scholar
  50. 50.
    M. Iliaš, P. Neogrády, Chem. Phys. Lett. 309, 441 (1999)ADSCrossRefGoogle Scholar
  51. 51.
    G.W.F. Drake, M. Cohen, J. Chem. Phys. 48, 1168 (1968)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Theoretische Chemie, Fakultät für ChemieUniversität BielefeldBielefeldGermany
  2. 2.Physikalische und Theoretische Chemie, Institut für Chemie und BiochemieFreie Universität BerlinBerlinGermany

Personalised recommendations