Nonlinear pulsational eigenmodes of a planar collisional dust molecular cloud with grain-charge fluctuation

Regular Article


We try to present a theoretical evolutionary model leading to the excitations of nonlinear pulsational eigenmodes in a planar (1D) collisional dust molecular cloud (DMC) on the Jeans scale. The basis of the adopted model is the Jeans assumption of self-gravitating homogeneous uniform medium for simplification. It is a self-gravitating multi-fluid consisting of the Boltzmann distributed warm electrons and ions, and the inertial cold dust grains with partial ionization. Dust-charge fluctuations, convections and all the possible collisions are included. The grain-charge behaves as a dynamical variable owing mainly to the attachment of the electrons and ions to the grain-surfaces randomly. The adopted technique is centered around a mathematical model based on new solitary spectral patterns within the hydrodynamic framework. The collective dynamics of the patterns is governed by driven Korteweg-de Vries (d-KdV) and Korteweg-de Vries (KdV) equations obtained by a standard multiscale analysis. Then, simplified analytical and numerical solutions are presented. The grain-charge fluctuation and collision processes play a key role in the DMC stability. The sensitive dependence of the eigenmode amplitudes on diverse relevant plasma parameters is discussed. The significance of the main results in astrophysical, laboratory and space environments are concisely summarized.


Plasma Physics 


  1. 1.
    F.H. Shu, F.C. Adams, S. Lizano, Ann. Rev. Astron. Astrophys. 25, 23 (1987)CrossRefADSGoogle Scholar
  2. 2.
    R.B. Larson, Rep. Prog. Phys. 66, 1651 (2003)CrossRefADSGoogle Scholar
  3. 3.
    R.S. Klessen, M.R. Krumholz, F. Heitsch, Adv. Sci. Lett. 4, 258 (2011)CrossRefGoogle Scholar
  4. 4.
    B.T. Draine, E.E. Salpeter, Astrophys. J. 231, 77 (1979)CrossRefADSGoogle Scholar
  5. 5.
    F. Verheest, Space Sci. Rev. 77, 267 (1996)CrossRefADSGoogle Scholar
  6. 6.
    F. Verheest, P.K. Shukla, Phys. Scr. 55, 83 (1997)CrossRefADSGoogle Scholar
  7. 7.
    T. Cattaert, F. Verheest, Astron. Astrophys. 438, 23 (2005)CrossRefADSGoogle Scholar
  8. 8.
    P.K. Karmakar, Pramana J. Phys. 76, 945 (2011)CrossRefADSGoogle Scholar
  9. 9.
    P.K. Karmakar, B. Borah, Phys. Scr. 86, 1 (2012)CrossRefGoogle Scholar
  10. 10.
    C.B. Dwivedi, A.K. Sen, S. Bujarbarua, Astron. Astrophys. 345, 1049 (1999)ADSGoogle Scholar
  11. 11.
    B.P. Pandey, J. Vranjes, S. Poedts, P.K. Shukla, Phys. Scr. 65, 513 (2002)CrossRefADSGoogle Scholar
  12. 12.
    F. Verheest, V.M. Cadez, Phys. Rev. E 66, 056404 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J. Vranjes, B.P. Pandey, S. Poedts, Phys. Rev. E 64, 066404 (2001)CrossRefADSGoogle Scholar
  14. 14.
    A.A. Mamun, P.K. Shukla, IEEE Trans. Plasma Sci. 30, 720 (2002)CrossRefADSGoogle Scholar
  15. 15.
    U. de Angelis, Phys. Scr. 45, 465 (1992)CrossRefADSGoogle Scholar
  16. 16.
    A.A. Mamun, P.K. Shukla, Phys. Scr. T98, 107 (2002)CrossRefADSGoogle Scholar
  17. 17.
    C. Cui, J. Goree, IEEE Trans. Plasma Sci. 22, 151 (1994)CrossRefADSGoogle Scholar
  18. 18.
    P.K. Shukla, B. Eliasson, Rev. Mod. Phys. 81, 25 (2009)CrossRefADSGoogle Scholar
  19. 19.
    A. Piel, A. Melzer, Plasma Phys. Control. Fusion 44, R1 (2002)CrossRefADSGoogle Scholar
  20. 20.
    F. Verheest, Phys. Scr. T63, 99 (1996)CrossRefADSGoogle Scholar
  21. 21.
    S. Burman, A. Roy Chowdhury, Chaos Sol. Fract. 13, 973 (2002)CrossRefMATHADSGoogle Scholar
  22. 22.
    V.E. Fortov, A.V. Ivlev, S.A. Khrapak, A.G. Khrapak, G.E. Morfill, Phys. Rep. 421, 1 (2005)MathSciNetCrossRefADSGoogle Scholar
  23. 23.
    A.V. Ivlev, A. Lazarian, V.N. Tsytovich, U. de Angelis, T. Hoang, G.E. Morfill, Astrophys. J. 723, 612 (2010)CrossRefADSGoogle Scholar
  24. 24.
    R.M. Crutcher, Ann. Rev. Astron. Astrophys. 50, 29 (2012)CrossRefADSGoogle Scholar
  25. 25.
    P.K. Karmakar, Res. Phys. 2, 77 (2012)Google Scholar
  26. 26.
    Guo Zhi-Rong, Yang Zeng-Quiang, Yin Bao-Xiang, Sun Mao-Zhu, Chin. Phys. B 19, 115203 (2010)CrossRefADSGoogle Scholar
  27. 27.
    B.P. Pandey, J. Vranjes, S.V. Vladimirov, Phys. Plasmas 19, 093701 (2012)CrossRefADSGoogle Scholar
  28. 28.
    G. Jacobs, V.V. Yaroshenko, F. Verheest, Phys. Rev. E 66, 026407 (2002)CrossRefADSGoogle Scholar
  29. 29.
    A.V. Volosevich, C.-V. Meister, Contrib. Plasma Phys. 42, 61 (2002)CrossRefADSGoogle Scholar
  30. 30.
    S.I. Popel, T.V. Losseva, A.P. Golub, R.L. Merlino, S.N. Andreev, Contrib. Plasma Phys. 45, 461 (2005)CrossRefADSGoogle Scholar
  31. 31.
    J.E. Thomas, Contrib. Plasma Phys. 49, 316 (2009)CrossRefADSGoogle Scholar
  32. 32.
    J. Vranjes, Astrophys. Space Sci. 213, 139 (1994)CrossRefMATHADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsTezpur University, NapaamTezpurIndia

Personalised recommendations