Advertisement

Perfect transfer of quantum states in a network of harmonic oscillators

  • D. PortesJr.
  • H. Rodrigues
  • S. B. DuarteEmail author
  • B. Baseia
Regular Article

Abstract

This work presents an exactly soluble scheme to address the problem of optimal transfer of quantum states through a set of s harmonic oscillators composing a network with connected ends as a closed quantum circuit. For this purpose we start from a general quadratic Hamiltonian form. The relationship between the parameters of the Hamiltonian, the network size, and the time interval required for such transfer are explicitly shown. Particular physical realizations of this Hamiltonian, transfer of entangled states, including transfer of states at the expense of a quantum entanglement, are also considered.

Keywords

Quantum Information 

References

  1. 1.
    C.H. Bennett, G. Brassard, C. Crepeau, R. Jozsa, A. Peres, W.K. Wootters, Phys. Rev. Lett. 70, 1895 (1993) MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. 2.
    D. Bouwnmeeter, G.J. Pan, K. Mattle, M. Eigl, H. Weinfurter, A. Zeilinger, Nature 390, 575 (1999) ADSCrossRefGoogle Scholar
  3. 3.
    K. Jahne, B. Yurke, U. Gavish, Phys. Rev. A 75, 010301(R) (2007) ADSCrossRefGoogle Scholar
  4. 4.
    D. Portes Jr., H. Rodrigues, S.B. Duarte, B. Baseia, Eur. Phys. J. D 48, 145 (2008)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    A.S.M. de Castro, V.V. Dodonov, S.S. Mizrhai, J. Opt. B: Quantum Semiclass. Opt. 4, 191 (2002)ADSCrossRefGoogle Scholar
  6. 6.
    D. Portes Jr., H. Rodrigues, B. Baseia, S.B. Duarte, Comput. Phys. Commun. 180, 226 (2009) MathSciNetADSzbMATHCrossRefGoogle Scholar
  7. 7.
    W.P. Bastos, W.B. Cardoso, A.T. Avelar, B. Baseia, Quantum Inf. Process. 10, 395 (2011)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    W.P. Bastos, W.B. Cardoso, A.T. Avelar, N.G. de Almeida, B. Baseia, Quantum Inf. Process. 11, 1867 (2012) MathSciNetADSzbMATHCrossRefGoogle Scholar
  9. 9.
    B.R. Mollow, Phys. Rev. 162, 1256 (1967) ADSCrossRefGoogle Scholar
  10. 10.
    M. Christandl, N. Datta, Tony, C. Dorlas, A. Ekert, A. Kay, A.J. Landahl, Phys. Rev. A 71, 032312 (2005) ADSCrossRefGoogle Scholar
  11. 11.
    C. Di Franco, M. Paternostro, M.S. Kim, Phys. Rev. Lett. 101, 230502 (2008) CrossRefGoogle Scholar
  12. 12.
    M.A. Jafarizadeh, R. Sufiani, Phys. Rev. A 77, 022315 (2008) ADSCrossRefGoogle Scholar
  13. 13.
    M.B. Plenio, J. Hartley, J. Eisert, New J. Phys. 6, 36 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    K. Audenaert, J. Eisert, M.B. Plenio, Phys. Rev. A 66, 042327 (2002) ADSCrossRefGoogle Scholar
  15. 15.
    H.J. Carmichael, Statistical Methods in Quantum Optics I: Master Equations and Fokker-Planck Equations (Springer-Verlag, Berlin, 2002)Google Scholar
  16. 16.
    K.E. Cahill, R.J. Glauber, Phys. Rev. 177, 1857 (1969) ADSCrossRefGoogle Scholar
  17. 17.
    F. Iachello, A. Del Sol Mesa, J. Math. Chem. 25, 345 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777 (1935)ADSzbMATHCrossRefGoogle Scholar
  19. 19.
    D.F. Walls, Nature 306, 141 (1983) ADSCrossRefGoogle Scholar
  20. 20.
    P. Maystre, M. Sargent III, Elements of Quantum Optics (Springer-Verlag, New York, 1990), Chap. 16Google Scholar
  21. 21.
    C.C. Gerry, P.L. Knight, Introduction to Quantum Optics (Cambridge University Press, Cambridge, 2005)Google Scholar
  22. 22.
    Q. You, F. Nori, Nature 474, 592 (2011) ADSCrossRefGoogle Scholar
  23. 23.
    K. Jacobs, A.N. Jordan, E.K. Irish, Eur. Phys. Lett. 82, 18003 (2008) CrossRefGoogle Scholar
  24. 24.
    C. Valverde, B. Baseia, Quantum Inf. Process. 12, 2019 (2013), and references thereinADSCrossRefGoogle Scholar
  25. 25.
    Y. Tikochinsky, J. Math. Phys. 19, 270 (1978)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • D. PortesJr.
    • 1
  • H. Rodrigues
    • 1
  • S. B. Duarte
    • 2
    Email author
  • B. Baseia
    • 3
  1. 1.Centro Federal de Educação Tecnológica do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Centro Brasileiro de Pesquisas FísicasRio de JaneiroBrazil
  3. 3.Instituto de Física, Universidade Federal de GoiásGoianiaBrazil

Personalised recommendations