Advertisement

The dynamical role of initial correlation in the exactly solvable dephasing model

  • Yang GaoEmail author
Regular Article

Abstract

We investigate the effects of the initial correlation on the dynamics of open system in the exactly solvable pure dephasing model. We show that the role of the initial correlation come into play through a phase function and a weight factor, which would perform oscillations during time evolution, and find that the decoherence of a qubit coupled to a boson bath is more enhanced with respect to a spin bath in the short time. We also demonstrate that the trace distance between two states of a qubit can increase above its initial value, and that the initial correlation can provide another resource for the damply oscillation and revival of the entanglement of two qubits. We finally investigate the dependence of the crossover of decoherence from the dynamical enhancement to suppression under the bang-bang pulse control on the initial correlation and the statistics of the bath constituents.

Keywords

Quantum Optics 

References

  1. 1.
    H.-P. Breuer, F. Petruccione, Open Quantum Systems (Oxford University Press, Oxford, 2002)Google Scholar
  2. 2.
    B.L. Hu, J.P. Paz, Y. Zhang, Phys. Rev. D. 45, 2843 (1992)MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. 3.
    P. Pechukas, Phys. Rev. Lett. 73, 1060 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  4. 4.
    P. Pechukas, Phys. Rev. Lett. 75, 3021 (1995)ADSCrossRefGoogle Scholar
  5. 5.
    R. Lo Franco et al., Int. J. Mod. Phys. B 27, 1245053 (2013)MathSciNetADSCrossRefGoogle Scholar
  6. 6.
    E.-M. Laine, J. Piilo, H.-P. Breuer, Europhys. Lett. 92, 60010 (2010)ADSCrossRefGoogle Scholar
  7. 7.
    J. Dajka, J. Luczka, Phys. Rev. A 82, 012341 (2010)ADSCrossRefGoogle Scholar
  8. 8.
    J. Dajka, J. Luczka, P. Hanggi, Phys. Rev. A 84, 032120 (2011)ADSCrossRefGoogle Scholar
  9. 9.
    J. Dajka et al., Rep. Math. Phys. 70, 193 (2012)MathSciNetADSzbMATHCrossRefGoogle Scholar
  10. 10.
    C. Uchiyama, M. Aihara, Phys. Rev. A 82, 044104 (2010)ADSCrossRefGoogle Scholar
  11. 11.
    D.Z. Rossatto et al., Phys. Rev. A 84, 042113 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    G.M. Palma, K.-A. Suominen, A.K. Ekert, Proc. R. Soc. London A 452, 567 (1996)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    J.H. Reina, L. Quiroga, N.F. Johnson, Phys. Rev. A 65, 032326 (2002)ADSCrossRefGoogle Scholar
  14. 14.
    P. Haikka et al., Phys. Rev. A 87, 010103(R) (2013)ADSGoogle Scholar
  15. 15.
    B. Aaronson et al., arXiv:1304.1163Google Scholar
  16. 16.
    L. Mazzola, J. Piilo, S. Maniscalco, Phys. Rev. Lett. 104, 200401 (2010)MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. Haikka et al., Phys. Rev. A 85, 060101 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    V.G. Morozov, S. Mathey, G. Röpke, Phys. Rev. A 85, 022101 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    B. Bellomo, R. Lo Franco, G. Compagno, Phys. Rev. Lett. 99, 160502 (2007)ADSCrossRefGoogle Scholar
  20. 20.
    R. Lo Franco et al., Phys. Scr. T147, 014019 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    L. Viola, S. Lloyd, Phys. Rev. A 58, 2733 (1998)MathSciNetADSCrossRefGoogle Scholar
  22. 22.
    D.D. Bhaktavatsala Rao, G. Kurizki, Phys. Rev. A 83, 032105 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    J. Luczka, Physica A 167, 919 (1990)MathSciNetADSCrossRefGoogle Scholar
  24. 24.
    W.G. Unruh, Phys. Rev. A 51, 992 (1995)MathSciNetADSCrossRefGoogle Scholar
  25. 25.
    G. Gordon, N. Erez, G. Kurizki, J. Phys. B 40, S75 (2007)MathSciNetADSCrossRefGoogle Scholar
  26. 26.
    F. Benatti, R. Floreanini, S. Olivares, Phys. Lett. A 376, 2951 (2012)MathSciNetADSCrossRefGoogle Scholar
  27. 27.
    R. Lo Franco et al., Phys. Rev. A 85, 032318 (2012)ADSCrossRefGoogle Scholar
  28. 28.
    R. Horodecki et al., Rev. Mod. Phys. 81, 865 (2009)MathSciNetADSzbMATHCrossRefGoogle Scholar
  29. 29.
    M. Schlosshauer, A.P. Hines, G.J. Milburn, Phys. Rev. A 77, 022111 (2008)ADSCrossRefGoogle Scholar
  30. 30.
    W.G. Unruh, Phys. Rev. D 26, 1862 (1982)MathSciNetCrossRefGoogle Scholar
  31. 31.
    P. Facchi et al., Phys. Rev. A 71, 022302 (2005)ADSCrossRefGoogle Scholar
  32. 32.
    S. Maniscalco et al., Phys. Rev. Lett. 100, 090503 (2008)MathSciNetADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of PhysicsXinyang Normal UniversityXinyang, HenanP.R. China

Personalised recommendations